Linearly concatenated cyclobutane lipids form a dense bacterial membrane

被引:343
作者
Damsté, JSS
Strous, M
Rijpstra, WIC
Hopmans, EC
Geenevasen, JAJ
van Duin, ACT
van Niftrik, LA
Jetten, MSM
机构
[1] Royal Netherlands Sea Res, Dept Marine Biogeochem & Toxicol, NL-1790 AB Den Burg, Netherlands
[2] Univ Nijmegen, Dept Microbiol, NL-6525 ED Nijmegen, Netherlands
[3] Univ Amsterdam, Inst Mol Chem, NL-1018 WS Amsterdam, Netherlands
[4] Newcastle Univ, Dept Fossil Fuels & Environm Geochem, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[5] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
关键词
D O I
10.1038/nature01128
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings(1-3), but four-membered aliphatic cyclobutane rings have never been observed. Here we report the discovery of cyclobutane rings in the dominant membrane lipids of two anaerobic ammonium-oxidizing (anammox) bacteria. These lipids contain up to five linearly fused cyclobutane moieties with cis ring junctions. Such 'ladderane' molecules are unprecedented in nature but are known as promising building blocks in optoelectronics(4). The ladderane lipids occur in the membrane of the anammoxosome, the dedicated intracytoplasmic compartment where anammox catabolism takes place. They give rise to an exceptionally dense membrane, a tight barrier against diffusion. We propose that such a membrane is required to maintain concentration gradients during the exceptionally slow anammox metabolism and to protect the remainder of the cell from the toxic anammox intermediates. Our results further illustrate that microbial membrane lipid structures are far more diverse than previously recognized(5-7).
引用
收藏
页码:708 / 712
页数:5
相关论文
共 29 条
  • [1] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690
  • [2] Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments
    Damsté, JSS
    Hopmans, EC
    Pancost, RD
    Schouten, S
    Geenevasen, JAJ
    [J]. CHEMICAL COMMUNICATIONS, 2000, (17) : 1683 - 1684
  • [3] DEROSA M, 1989, FEMS SYMP, V49, P167
  • [4] THE LIPIDS OF ARCHAEBACTERIA
    DEROSA, M
    GAMBACORTA, A
    [J]. PROGRESS IN LIPID RESEARCH, 1988, 27 (03) : 153 - 175
  • [5] Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate
    Egli, K
    Fanger, U
    Alvarez, PJJ
    Siegrist, H
    van der Meer, JR
    Zehnder, AJB
    [J]. ARCHIVES OF MICROBIOLOGY, 2001, 175 (03) : 198 - 207
  • [6] Cyclopropane ring formation in membrane lipids of bacteria
    Grogan, DW
    Cronan, JE
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1997, 61 (04) : 429 - &
  • [7] AQUIFEX-PYROPHILUS GEN-NOV SP-NOV REPRESENTS A NOVEL GROUP OF MARINE HYPERTHERMOPHILIC HYDROGEN-OXIDIZING BACTERIA
    HUBER, R
    WILHARM, T
    HUBER, D
    TRINCONE, A
    BURGGRAF, S
    KONIG, H
    RACHEL, R
    ROCKINGER, I
    FRICKE, H
    STETTER, KO
    [J]. SYSTEMATIC AND APPLIED MICROBIOLOGY, 1992, 15 (03) : 340 - 351
  • [8] Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen nov sp nov
    Huber, R
    Rossnagel, P
    Woese, CR
    Rachel, R
    Langworthy, TA
    Stetter, KO
    [J]. SYSTEMATIC AND APPLIED MICROBIOLOGY, 1996, 19 (01) : 40 - 49
  • [9] LANGWORTHY TA, 1986, SYST APPL MICROBIOL, V7, P253
  • [10] LANGWORTHY TA, 1983, SYST APPL MICROBIOL, V4, P1, DOI 10.1016/S0723-2020(83)80029-0