Quasiregular maps S-3->S-3 with wild branch sets

被引:25
作者
Heinonen, J [1 ]
Rickman, S [1 ]
机构
[1] HELWAN UNIV,DEPT MATH,HELSINKI 00100,FINLAND
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0040-9383(97)00015-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two examples of quasiregular maps S-3-->S-3 that branch on a wild Cantor set are constructed. As an application it is shown that certain interesting 3-dimensional metric spaces recently constructed by Semmes admit Lipschitz branched covers onto S-3. Moreover, it is shown that a uniformly quasiconformal group of Freedman and Skora acting on S-3 and not topologically conjugate to a Mobius group is quasiregularly semiconjugate to a Mobius group. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 13 条
[1]  
[Anonymous], 1993, ERGEBNISSE MATH IHRE
[2]   CONSTRUCTION OF BRANCHED COVERINGS OF LOW-DIMENSIONAL MANIFOLDS [J].
BERSTEIN, I ;
EDMONDS, AL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 247 (JAN) :87-124
[3]  
DAVID G, 1990, LECT NOTES PURE APPL, V122
[4]  
FREEDMAN MH, 1987, J DIFFER GEOM, V25, P75
[5]   Weighted Sobolev and Poincare inequalities and quasiregular mappings of polynomial type [J].
Heinonen, J ;
Koskela, P .
MATHEMATICA SCANDINAVICA, 1995, 77 (02) :251-271
[6]   ELLIPTIC-EQUATIONS AND MAPS OF BOUNDED LENGTH DISTORTION [J].
MARTIO, O ;
VAISALA, J .
MATHEMATISCHE ANNALEN, 1988, 282 (03) :423-443
[7]  
Moise E. E., 1977, GEOMETRIC TOPOLOGY D
[8]   THE ANALOG OF PICARDS THEOREM FOR QUASIREGULAR-MAPPINGS IN DIMENSION-3 [J].
RICKMAN, S .
ACTA MATHEMATICA, 1985, 154 (3-4) :195-242
[9]   SETS WITH LARGE LOCAL INDEX OF QUASI-REGULAR-MAPPINGS IN DIMENSION 3 [J].
RICKMAN, S .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :493-498
[10]  
Semmes S, 1996, REV MAT IBEROAM, V12, P337