Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles

被引:56
作者
Stefani, G
Onofri, F
Valtorta, F
Vaccaro, P
Greengard, P
Benfenati, F
机构
[1] UNIV MODENA, PHYSIOL SECT, DEPT BIOMED SCI, I-41100 MODENA, ITALY
[2] UNIV ROMA TOR VERGATA, DEPT EXPT MED, I-00133 ROME, ITALY
[3] UNIV MILAN, DIBIT,SAN RAFFAELE SCI INST,CNR, CTR CELLULAR & MOL PHARMACOL,DEPT MED PHARMACOL, I-20100 MILAN, ITALY
[4] ROCKEFELLER UNIV, MOL & CELLULAR NEUROSCI LAB, NEW YORK, NY 10021 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1997年 / 504卷 / 03期
关键词
D O I
10.1111/j.1469-7793.1997.501bd.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Synapsin I, a major synaptic vesicle (SV)-associated phosphoprotein, is involved in the regulation of neurotransmitter release and synapse formation. By binding to both phospholipid and protein components of SV with high affinity and in a phosphorylation-dependent fashion, synapsin I is believed to cluster SV and to attach them to the actin-based cytoskeleton of the nerve terminal. 2. In the present study we have investigated the kinetic aspects of synapsin I-SV interactions and the mechanisms of their modulation by ionic strength and site-specific phosphorylation, using fluorescence resonance energy transfer between suitable fluorophores linked to synapsin I and to the membrane bilayer. 3. The binding of synapsin I to the phospholipid and protein components of SV has fast kinetics: mean time constants ranged between 1 and 4 s for association and 9 and Ils for ionic strength-induced dissociation at 20 degrees C. The interaction with the phospholipid component consists predominantly of a hydrophobic binding with the core of the membrane which may account for the membrane stabilizing effect of synapsin I. 4. Phosphorylation of synapsin I by either SV-associated or purified exogenous Ca2+/calmodulin-dependent protein kinase II (CaMPKII) inhibited the association rate and the binding to SV at steady state by acting on the ionic strength-sensitive component of the binding. When dephosphorylated synapsin I was previously bound to SV, exposure of SV to Ca2+/calmodulin in the presence of ATP triggered a prompt dissociation of synapsin I with a time constant similar to that of ionic strength-induced dissociation. 5. In conclusion, the reversible interactions between synapsin I and SV are highly regulated by site-specific phosphorylation and have kinetics of the same order of magnitude as the kinetics of SV recycling determined in mammalian neurons under comparable temperature conditions. These findings are consistent with the hypothesis that synapsin I associates with, and dissociates from, SV during the exo-endocytotic cycle. The on-vesicle phosphorylation of synapsin I by the SV-associated CaMPKII, and the subsequent dissociation of the protein from the vesicle membrane, though not involved. in mediating exocytosis of primed vesicles evoked by a single stimulus, may represent a prompt and efficient mechanism for the modulation of neurotransmitter release and presynaptic plasticity.
引用
收藏
页码:501 / 515
页数:15
相关论文
共 43 条
[1]   SYNAPSIN-I BUNDLES F-ACTIN IN A PHOSPHORYLATION-DEPENDENT MANNER [J].
BAHLER, M ;
GREENGARD, P .
NATURE, 1987, 326 (6114) :704-707
[2]   CHARACTERIZATION OF SYNAPSIN-I FRAGMENTS PRODUCED BY CYSTEINE-SPECIFIC CLEAVAGE - A STUDY OF THEIR INTERACTIONS WITH F-ACTIN [J].
BAHLER, M ;
BENFENATI, F ;
VALTORTA, F ;
CZERNIK, AJ ;
GREENGARD, P .
JOURNAL OF CELL BIOLOGY, 1989, 108 (05) :1841-1849
[3]  
BENFENATI F, 1990, J BIOL CHEM, V265, P12584
[4]   Biochemical and functional characterization of the synaptic vesicle-associated form of Ca2+/calmodulin-dependent protein kinase II [J].
Benfenati, F ;
Onofri, F ;
Czernik, AJ ;
Valtorta, F .
MOLECULAR BRAIN RESEARCH, 1996, 40 (02) :297-309
[5]   INTERACTIONS OF SYNAPSIN-I WITH SMALL SYNAPTIC VESICLES - DISTINCT SITES IN SYNAPSIN-I BIND TO VESICLE PHOSPHOLIPIDS AND VESICLE PROTEINS [J].
BENFENATI, F ;
BAHLER, M ;
JAHN, R ;
GREENGARD, P .
JOURNAL OF CELL BIOLOGY, 1989, 108 (05) :1863-1872
[6]   ELECTROSTATIC AND HYDROPHOBIC INTERACTIONS OF SYNAPSIN-I AND SYNAPSIN-I FRAGMENTS WITH PHOSPHOLIPID-BILAYERS [J].
BENFENATI, F ;
GREENGARD, P ;
BRUNNER, J ;
BAHLER, M .
JOURNAL OF CELL BIOLOGY, 1989, 108 (05) :1851-1862
[7]   SYNAPTIC VESICLE-ASSOCIATED CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE-II IS A BINDING-PROTEIN FOR SYNAPSIN-I [J].
BENFENATI, F ;
VALTORTA, F ;
RUBENSTEIN, JL ;
GORELICK, FS ;
GREENGARD, P ;
CZERNIK, AJ .
NATURE, 1992, 359 (6394) :417-420
[8]   INTERACTIONS OF SYNAPSIN-I WITH PHOSPHOLIPIDS - POSSIBLE ROLE IN SYNAPTIC VESICLE CLUSTERING AND IN THE MAINTENANCE OF BILAYER STRUCTURES [J].
BENFENATI, F ;
VALTORTA, F ;
ROSSI, MC ;
ONOFRI, F ;
SIHRA, T ;
GREENGARD, P .
JOURNAL OF CELL BIOLOGY, 1993, 123 (06) :1845-1855
[9]   INTERACTION OF FREE AND SYNAPTIC VESICLE BOUND SYNAPSIN-I WITH F-ACTIN [J].
BENFENATI, F ;
VALTORTA, F ;
CHIEREGATTI, E ;
GREENGARD, P .
NEURON, 1992, 8 (02) :377-386
[10]  
BETZ WJ, 1995, CURR BIOL, V5, P1096