The self-linking number of a closed curve in Rn

被引:2
作者
Amilibia, AM [1 ]
Ballesteros, JJN [1 ]
机构
[1] Univ Valencia, Dept Geometria & Topol, E-46100 Burjassot, Spain
关键词
D O I
10.1142/S0218216500000268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the self-linking number of a smooth closed curve alpha : S-1 --> R-n with respect to a 3-dimensional vector bundle over the curve, provided that some regularity conditions are satisfied. When n = 3, this construction gives the classical self-linking number of a closed embedded curve with non-vanishing curvature [5]. We also look at some interesting particular cases, which correspond to the osculating or the orthogonal vector bundle of the curve.
引用
收藏
页码:491 / 503
页数:13
相关论文
共 6 条
[1]  
AMILIBIA AM, NOTEBOOK FILES EXAMP
[2]  
BALLESTEROS JJN, 1999, RES NOTES MATH, V412, P188
[3]  
Calugareanu G., 1959, REV MATH PURE APPL, V4, P5
[4]   Embedding and knotting of positive curvature surfaces in 3-space [J].
Gluck, H ;
Pan, LH .
TOPOLOGY, 1998, 37 (04) :851-873
[5]  
POHL WF, 1968, J MATH MECH, V17, P170
[6]   SELF-LINKING AND GAUSS-INTEGRAL IN HIGHER DIMENSIONS [J].
WHITE, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (03) :693-&