ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro

被引:147
作者
Lackner, LL [1 ]
Raskin, DM [1 ]
de Boer, PAJ [1 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Mol Biol & Microbiol, Cleveland, OH 44106 USA
关键词
D O I
10.1128/JB.185.3.735-749.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Proper placement of the division apparatus in Escherichia coli requires pole-to-pole oscillation of the MinC division inhibitor. MinC dynamics involves a membrane association-dissociation cycle that is driven by the activities of the MinD ATPase and the MinE topological specificity factor, which themselves undergo coupled oscillatory localization cycles. To understand the biochemical mechanisms underlying Min protein dynamics, we studied the interactions of purified Min proteins with phospholipid vesicles and the role of ATP in these interactions. We show that (i) the ATP-bound form of MinD (MinD.ATP) readily associates with phospholipid vesicles in the presence of Mg2+, whereas the ADP-bound form (MinD.ADP) does not; (ii) MinD.ATP binds membrane in a self-enhancing fashion; (iii) both MinC and MinE can be recruited to MinD.ATP-decorated vesicles; (iv) MinE stimulates dissociation of MinD.ATP from the membrane in a process requiring hydrolysis of the nucleotide; and (v) MinE stimulates dissociation of MinC from MinD.ATP-membrane complexes, even when ATP hydrolysis is blocked. The results support and extend recent work by Z. Hu et al. (Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Nati. Acad. Sci. USA 99:6761-6766, 2002) and support models of protein oscillation wherein MinE induces Min protein dynamics by stimulating the conversion of the membrane-bound form of MinD (MinD.ATP) to the cytoplasmic form (MinD.ADP). The results also indicate that MinE-stimulated dissociation of MinC from the MinC-MinD.ATP-membrane complex can, and may, occur prior to hydrolysis of the nucleotide.
引用
收藏
页码:735 / 749
页数:15
相关论文
共 47 条
[1]   MINIATURE ESCHERICHIA COLI CELLS DEFICIENT IN DNA [J].
ADLER, HI ;
FISHER, WD ;
COHEN, A ;
HARDIGREE, AA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1967, 57 (02) :321-+
[2]   YgbQ, a cell division protein in Escherichia coli and Vibrio cholerae, localizes in codependent fashion with FtsL to the division site [J].
Buddelmeijer, N ;
Judson, N ;
Boyd, D ;
Mekalanos, JJ ;
Beckwith, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6316-6321
[3]   FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division [J].
Chen, JC ;
Beckwith, J .
MOLECULAR MICROBIOLOGY, 2001, 42 (02) :395-413
[4]   Exploring intracellular space: function of the Min system in round-shaped Escherichia coli [J].
Corbin, BD ;
Yu, XC ;
Margolin, W .
EMBO JOURNAL, 2002, 21 (08) :1998-2008
[5]   Crystal structure of the bacterial cell division inhibitor MinC [J].
Cordell, SC ;
Anderson, RE ;
Löwe, J .
EMBO JOURNAL, 2001, 20 (10) :2454-2461
[6]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38
[7]   A DIVISION INHIBITOR AND A TOPOLOGICAL SPECIFICITY FACTOR CODED FOR BY THE MINICELL LOCUS DETERMINE PROPER PLACEMENT OF THE DIVISION SEPTUM IN ESCHERICHIA-COLI [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
ROTHFIELD, LI .
CELL, 1989, 56 (04) :641-649
[8]   ROLES OF MINC AND MIND IN THE SITE-SPECIFIC SEPTATION BLOCK MEDIATED BY THE MINCDE SYSTEM OF ESCHERICHIA-COLI [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
ROTHFIELD, LI .
JOURNAL OF BACTERIOLOGY, 1992, 174 (01) :63-70
[9]   THE MIND PROTEIN IS A MEMBRANE ATPASE REQUIRED FOR THE CORRECT PLACEMENT OF THE ESCHERICHIA-COLI DIVISION SITE [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
HAND, AR ;
ROTHFIELD, LI .
EMBO JOURNAL, 1991, 10 (13) :4371-4380
[10]   CENTRAL ROLE FOR THE ESCHERICHIA-COLI MINC GENE-PRODUCT IN 2 DIFFERENT CELL DIVISION-INHIBITION SYSTEMS [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
ROTHFIELD, LI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (03) :1129-1133