Matched asymptotic solutions for the steady banded flow of the diffusive Johnson-Segalman model in various geometries

被引:61
作者
Radulescu, O [1 ]
Olmsted, PD
机构
[1] Univ Leeds, Dept Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, IRC Polymer Sci & Technol, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Rennes 1, Inst Math Rennes, F-35042 Rennes, France
基金
英国工程与自然科学研究理事会;
关键词
Jonson-Segalman model; steady flow; Poiseuille and cylindrical Couette geometries;
D O I
10.1016/S0377-0257(99)00093-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present analytic solutions for steady flow of the Johnson-Segalman (JS) model with a diffusion term in various geometries and under controlled strain rate conditions, using matched asymptotic expansions. The diffusion term represents a singular perturbation that lifts the continuous degeneracy of stable, banded, steady states present in the absence of diffusion. We show that the stable steady flow solutions in Poiseuille and cylindrical Couette geometries always have two bands. For Couette flow and small curvature, two different banded solutions are possible, differing by the spatial sequence of the two bands. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:143 / 164
页数:22
相关论文
共 39 条
[1]   ISOTROPIC-TO-NEMATIC TRANSITION IN WORMLIKE MICELLES UNDER SHEAR [J].
BERRET, JF ;
ROUX, DC ;
PORTE, G .
JOURNAL DE PHYSIQUE II, 1994, 4 (08) :1261-1279
[2]   Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions [J].
Bode, M .
PHYSICA D, 1997, 106 (3-4) :270-286
[3]   Observation of bulk phase separation and coexistence in a sheared micellar solution [J].
Boltenhagen, P ;
Hu, YT ;
Matthys, EF ;
Pine, DJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (12) :2359-2362
[4]   Bistability in non-Newtonian flow: Rheology of lyotropic liquid crystals [J].
Bonn, D ;
Meunier, J ;
Greffier, O ;
Al-Kahwaji, A ;
Kellay, H .
PHYSICAL REVIEW E, 1998, 58 (02) :2115-2118
[5]   Two-phase shear band structures at uniform stress [J].
Britton, MM ;
Callaghan, PT .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :4930-4933
[6]   EXPLANATION OF SPURT FOR A NON-NEWTONIAN FLUID BY A DIFFUSION TERM [J].
BRUNOVSKY, P ;
SEVCOVIC, D .
QUARTERLY OF APPLIED MATHEMATICS, 1994, 52 (03) :401-426
[7]   A study of the ''spurt effect'' in wormlike micelles using nuclear magnetic resonance microscopy [J].
Callaghan, PT ;
Cates, ME ;
Rofe, CJ ;
Smeulders, JBAF .
JOURNAL DE PHYSIQUE II, 1996, 6 (03) :375-393
[8]  
Decruppe JP, 1997, J PHYS II, V7, P257, DOI 10.1051/jp2:1997123
[9]  
Doi M., 1989, THEORY POLYM DYNAMIC
[10]   EXISTENCE OF SOLUTIONS FOR ALL DEBORAH NUMBERS FOR A NON-NEWTONIAN MODEL MODIFIED TO INCLUDE DIFFUSION [J].
ELKAREH, AW ;
LEAL, LG .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1989, 33 (03) :257-287