Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats

被引:164
作者
Buehnemann, Claudia
Scholz, Andreas
Bernreuther, Christian
Malik, Christoph Y.
Braun, Holger
Schachner, Melitta
Reymann, Klaus G.
Dihne, Marcel
机构
[1] Leibniz Inst Neurobiol, IfN, D-39118 Magdeburg, Germany
[2] Univ Giessen, Inst Physiol, Giessen, Germany
[3] Univ Hamburg, Zentrum Mol Neurobiol Hamburg, Hamburg, Germany
[4] Univ Dusseldorf, Neurol Klin, D-4000 Dusseldorf, Germany
关键词
stem cells; brain ischaemia; transplantation; differentiation; electrophysiology;
D O I
10.1093/brain/awl261
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Stroke represents one of the leading causes of death and disability in Western countries, but despite intense research, only few options exist for the treatment of stroke-related infarction of brain tissue. In experimental stroke, cell therapy can partly reverse some behavioural deficits. However, the underlying mechanisms have remained unknown as most studies revealed only little, if any, evidence for neuronal replacement and the observed behavioural improvements appeared to be related rather to a graft-derived induction of a positive response in the remaining host tissue than to cell replacement by the graft itself. The present study was performed to test a murine embryonic stem cell (ESC)-based approach in rats subjected to endothelin-induced middle cerebral artery occlusion. Efficacy of cell therapy regarding graft survival, neuronal yield and diversity, and electrophysiological features of the grafted cells were tested after transplanting ESC-derived neural precursors into the infarct core and periphery of adult rats. Here, we show that grafted cells can survive, albeit not entirely, most probably as a consequence of an ongoing immune response, within the infarct core for up to 12 weeks after transplantation and that they differentiate with high yield into immunohistochemically mature glial cells and neurons of diverse neurotransmitter-subtypes. Most importantly, transplanted cells demonstrate characteristics of electrophysiologically functional neurons with voltage-gated sodium currents that enable these cells to fire action potentials. Additionally, during the first 7 weeks after transplantation we observed spontaneous excitatory post-synaptic currents in graft-derived cells indicating synaptic input. Thus, our observations show that ESC-based regenerative approaches may be successful in an acutely necrotic cellular environment.
引用
收藏
页码:3238 / 3248
页数:11
相关论文
共 43 条
[1]  
ABBONDANZO SJ, 1993, METHOD ENZYMOL, V225, P803
[2]   In vitro networks:: cortical mechanisms of anaesthetic action [J].
Antkowiak, B .
BRITISH JOURNAL OF ANAESTHESIA, 2002, 89 (01) :102-111
[3]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[4]   EMBRYONIC STEM-CELLS EXPRESS NEURONAL PROPERTIES IN-VITRO [J].
BAIN, G ;
KITCHENS, D ;
YAO, M ;
HUETTNER, JE ;
GOTTLIEB, DI .
DEVELOPMENTAL BIOLOGY, 1995, 168 (02) :342-357
[5]   Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures [J].
Benninger, F ;
Beck, H ;
Wernig, M ;
Tucker, KL ;
Brüstle, O ;
Scheffler, B .
JOURNAL OF NEUROSCIENCE, 2003, 23 (18) :7075-7083
[6]   Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model [J].
Björklund, LM ;
Sánchez-Pernaute, R ;
Chung, SM ;
Andersson, T ;
Chen, IYC ;
McNaught, KS ;
Brownell, AL ;
Jenkins, BG ;
Wahlestedt, C ;
Kim, KS ;
Isacson, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2344-2349
[7]   Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats [J].
Borlongan, CV ;
Tajima, Y ;
Trojanowski, JQ ;
Lee, VMY ;
Sanberg, PR .
EXPERIMENTAL NEUROLOGY, 1998, 149 (02) :310-321
[8]   Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats [J].
Chen, JL ;
Sanberg, PR ;
Li, Y ;
Wang, L ;
Lu, M ;
Willing, AE ;
Sanchez-Ramos, J ;
Chopp, M .
STROKE, 2001, 32 (11) :2682-2688
[9]   Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Zhang, ZG ;
Lu, DY ;
Lu, M ;
Chopp, M .
STROKE, 2001, 32 (04) :1005-1011
[10]   Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation [J].
Deacon, T ;
Dinsmore, J ;
Costantini, LC ;
Ratliff, J ;
Isacson, O .
EXPERIMENTAL NEUROLOGY, 1998, 149 (01) :28-41