Multiwavelet frames in signal space originated from hermite splines

被引:14
作者
Averbuch, Amir Z. [1 ]
Zheludev, Valery A. [1 ]
Cohen, Tamir [1 ]
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
关键词
cubic Hermite splines; multiwavelet frames; three channels;
D O I
10.1109/TSP.2006.887569
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method for construction of multiwavelet frames for manipulation of discrete signals. The frames are generated by three-channel perfect reconstruction oversampled multifilter banks. The design of the multifilter bankstarts; from a pair of interpolatory multifilters. We derive these interpolatory multifilters from the cubic Hermite splines. We use the original preprocessing algorithms, which transform scalar signals into vector arrays that serve as inputs to the oversampled analysis multifilter banks. These preprocessing algorithms do not degrade the approximation accuracy of the transforms of the vectors by multifilter banks. The postprocessing algorithms convert the vector output of the synthesis multifilter banks into scalar signal. The discrete framelets, generated by the designed filter banks, are symmetric and have short support. The analysis framelets have four vanishing moments, whereas the synthesis framelets converge to Hermite splines supported on the interval [-1, 1].
引用
收藏
页码:797 / 808
页数:12
相关论文
共 26 条
[1]   WAVELET-LIKE BASES FOR THE FAST SOLUTION OF 2ND-KIND INTEGRAL-EQUATIONS [J].
ALPERT, B ;
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :159-184
[2]   A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS [J].
ALPERT, BK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :246-262
[3]  
AMRANI O, IN PRESS INT J WAVEL
[4]  
[Anonymous], 1993, Ten Lectures of Wavelets
[5]   Interpolatory frames in signal space [J].
Averbuch, Amir Z. ;
Zheludev, Valery A. ;
Cohen, Tamir .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (06) :2126-2139
[6]   Lifting scheme for biorthogonal multiwavelets originated from hermite splines [J].
Averbuch, AZ ;
Zheludev, VA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) :487-500
[7]   Frame-theoretic analysis of oversampled filter banks [J].
Bolcskei, H ;
Hlawatsch, F ;
Feichtinger, HG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) :3256-3268
[8]   Compactly supported tight and sibling frames with maximum vanishing moments [J].
Chui, CK ;
He, WJ ;
Stöckler, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :224-262
[9]   Compactly supported tight frames associated with refinable functions [J].
Chui, CK ;
He, WJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (03) :293-319
[10]   Image compression through embedded multiwavelet transform coding [J].
Cotronei, M ;
Lazzaro, D ;
Montefusco, LB ;
Puccio, L .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (02) :184-189