On a conjecture of E. A. Rakhmanov

被引:19
作者
Beckermann, B [1 ]
机构
[1] UST Lille, UFR IEEA, Lab Analyse Numer & Optimisat, F-59655 Villeneuve Dascq, France
关键词
discrete orthogonality; Fekete points; constrained equilibrium problem;
D O I
10.1007/s003659910018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a conjecture of E. A. Rakhmanov is true concerning the zero distribution of orthogonal polynomials with respect to a measure having a discrete real support. We also discuss the case of extremal polynomials with respect to some discrete L-p-norm, 0 < p less than or equal to infinity, and give an extension to complex supports. Furthermore, we present properties of weighted Fekete points with respect to discrete complex sets, such as the weighted discrete transfinite diameter and a weighted discrete Bernstein-Walsh-like inequality.
引用
收藏
页码:427 / 448
页数:22
相关论文
共 10 条
[1]  
BECKERMANN B, IN PRESS P C ORTH PO
[2]  
DAMELIN SB, 1998, ASYMPTOTIC WEIGHTED
[3]   Constrained energy problems with applications to orthogonal polynomials of a discrete variable [J].
Dragnev, PD ;
Saff, EB .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 72 (1) :223-259
[4]   Zero distributions for discrete orthogonal polynomials [J].
Kuijlaars, ABJ ;
Rakhmanov, EA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :255-274
[5]  
KUIJLAARS ABJ, ZERO DISTRIBUTIONS D
[6]  
KUIJLAARS ABJ, IN PRESS P LOND MAT
[7]  
NIKISHIN EM, 1991, T MATH MONOGRAPHS, V92
[8]   Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable [J].
Rakhmanov, EA .
SBORNIK MATHEMATICS, 1996, 187 (7-8) :1213-1228
[9]  
Saff E. B., 1997, LOGARITHMIC POTENTIA
[10]  
STAHL H, 1992, ENCYC MATH