Turnip yellow mosaic virus (TYMV) RNA directs the translation of two overlapping open reading frames. Competing models have been previously published to explain ribosome access to the downstream polyprotein cistron. The Trojan horse model, based on cell-free experiments, proposes noncanonical cap-independent initiation in which the 3'-terminal tRNA-like structure (TLS) functionally replaces initiator tRNA, and the valine bound to the TLS becomes cis-incorporated into viral protein. The initiation coupling model, based on in vivo expression and ribosome toe-printing studies, proposes a variation of canonical leaky scanning. Here, we have re-examined the wheat germ extract experiments that led to the Trojan horse model, incorporating a variety of controls. We report that (1) translation in vitro from the polyprotein AUG of TYMV RNA is unchanged after removal of the 39 TLS but is stimulated by the presence of a 5'-cap; (2) the presence of free cap analog or edeine (which interferes with initiation at the ribosomal P site and its tRNA(i)(Met) involvement) inhibits translation from the polyprotein AUG; (3) the toe-prints of immediately post-initiation ribosomes on TYMV RNA are similar with and without an intact TLS; and (4) significant deacylation of valyl-TYMV RNA in wheat germ extract can complicate the detection of cis-incorporation. These results favor the initiation coupling model.