A Fast Reliable Image Quality Predictor by Fusing Micro- and Macro-Structures

被引:191
作者
Gu, Ke [1 ]
Li, Leida [2 ]
Lu, Hong [3 ]
Min, Xiongkuo [4 ]
Lin, Weisi [5 ]
机构
[1] Beijing Univ Technol, BJUT Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellign, Beijing 100124, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou 221116, Peoples R China
[3] Nanjing Inst Technol, Sch Automat, Nanjing 211167, Jiangsu, Peoples R China
[4] Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
[5] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Color information; gradient operator; per-ceptual image quality assessment (IQA); pooling; structure; DATA-DRIVEN CONTROL; FAULT-DIAGNOSIS; SALIENCY; COLOR; SIMILARITY; ATTENTION; MODEL;
D O I
10.1109/TIE.2017.2652339
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A fast reliable computational quality predictor is eagerly desired in practical image/video applications, such as serving for the quality monitoring of real-time coding and transcoding. In this paper, we propose a new perceptual image quality assessment (IQA) metric based on the human visual system (HVS). The proposed IQA model performs efficiently with convolution operations at multiscales, gradient magnitude, and color information similarity, and a perceptual-based pooling. Extensive experiments are conducted using four popular large-size image databases and two multiply distorted image databases, and results validate the superiority of our approach over modern IQA measures in efficiency and efficacy. Our metric is built on the theoretical support of the HVS with lately designed IQA methods as special cases.
引用
收藏
页码:3903 / 3912
页数:10
相关论文
共 52 条
  • [1] Adelson E. H., 2000, NEW COGNITIVE NEUROS, P339, DOI DOI 10.1068/P230869
  • [2] [Anonymous], 2009, Advances of Modern Radioelectronics
  • [3] [Anonymous], IEEE T MULTIMEDIA
  • [4] Saliency, attention, and visual search: An information theoretic approach
    Bruce, Neil D. B.
    Tsotsos, John K.
    [J]. JOURNAL OF VISION, 2009, 9 (03):
  • [5] VSNR: A wavelet-based visual signal-to-noise ratio for natural images
    Chandler, Damon M.
    Hemami, Sheila S.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) : 2284 - 2298
  • [6] Neural Learning Control of Marine Surface Vessels With Guaranteed Transient Tracking Performance
    Dai, Shi-Lu
    Wang, Min
    Wang, Cong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (03) : 1717 - 1727
  • [7] SPATIAL-FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL-CORTEX
    DEVALOIS, RL
    ALBRECHT, DG
    THORELL, LG
    [J]. VISION RESEARCH, 1982, 22 (05) : 545 - 559
  • [8] Gao ZW, 2015, IEEE T IND ELECTRON, V62, P3768, DOI [10.1109/TIE.2015.2417501, 10.1109/TIE.2015.2419013]
  • [9] Goldstein E. Bruce, 1979, SENSATION PERCEPTION
  • [10] No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization
    Gu, Ke
    Lin, Weisi
    Zhai, Guangtao
    Yang, Xiaokang
    Zhang, Wenjun
    Chen, Chang Wen
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4559 - 4565