Numerical simulation of proton exchange membrane fuel cells at high operating temperature

被引:55
作者
Peng, Jie [1 ]
Lee, Seung Jae [1 ]
机构
[1] Samsung Adv Inst Technol, Energy Lab, Yongin 446712, Gyeonggi Do, South Korea
关键词
PEM fuel cell; high operating temperature; local overpotential; numerical simulation; CFD;
D O I
10.1016/j.jpowsour.2006.08.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T >= 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1182 / 1191
页数:10
相关论文
共 33 条
[1]   Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly(2,5-benzimidazole) membranes [J].
Asensio, JA ;
Borró, S ;
Gómez-Romero, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) :A304-A310
[2]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[3]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[4]   Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C [J].
Costamagna, P ;
Yang, C ;
Bocarsly, AB ;
Srinivasan, S .
ELECTROCHIMICA ACTA, 2002, 47 (07) :1023-1033
[5]  
Cussler E. L., 2009, DIFFUSION MASS TRANS
[6]  
*FLUENT INC, 2001, FLUENT 6 0 6 1 US GU
[7]   High temperature proton conducting hybrid polymer electrolyte membranes [J].
Homna, I ;
Nakajima, H ;
Nomura, S .
SOLID STATE IONICS, 2002, 154 :707-712
[8]   A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC [J].
Hwang, JJ ;
Chen, CK ;
Savinell, RF ;
Liu, CC ;
Wainright, J .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2004, 34 (02) :217-224
[9]   Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells [J].
Jalani, NH ;
Dunn, K ;
Datta, R .
ELECTROCHIMICA ACTA, 2005, 51 (03) :553-560
[10]   A single-phase, non-isothermal model for PEM fuel cells [J].
Ju, H ;
Meng, H ;
Wang, CY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (07) :1303-1315