Bacterial cysteine desulfurases: their function and mechanisms

被引:228
作者
Mihara, H [1 ]
Esaki, N [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
关键词
D O I
10.1007/s00253-002-1107-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cysteine desulfurase is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme that catalyzes the conversion Of L-cysteine to L-alanine and sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved cysteine residue. Increased evidence for the functions of cysteine desulfurases has revealed their important roles in the biosyntheses of Fe-S clusters, thiamine, thionucleosides in tRNA, biotin, lipoic acid, molybdopterin, and NAD. The enzymes are also proposed to be involved in cellular iron homeostasis and in the biosynthesis of selenoproteins. The mechanisms for sulfur mobilization mediated by cysteine desulfurases are as yet unknown, but enzymes capable of providing a variety of biosynthetic pathways for sulfur/selenium-containing biomolecules are probably applicable to the production of cofactors and the bioconversion of useful compounds.
引用
收藏
页码:12 / 23
页数:12
相关论文
共 124 条
[1]   Modular organization and identification of a mononuclear iron-binding site within the NifU protein [J].
Agar, JN ;
Yuvaniyama, P ;
JAck, RF ;
Cash, VL ;
Smith, AD ;
Dean, DR ;
Johnson, MK .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2000, 5 (02) :167-177
[2]   IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU [J].
Agar, JN ;
Krebs, C ;
Frazzon, J ;
Huynh, BH ;
Dean, DR ;
Johnson, MK .
BIOCHEMISTRY, 2000, 39 (27) :7856-7862
[3]   Role of the IscU protein in iron-sulfur cluster biosynthesis:: IscS-mediated assembly of a [Fe2S2] cluster in IscU [J].
Agar, JN ;
Zheng, LM ;
Cash, VL ;
Dean, DR ;
Johnson, MK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (09) :2136-2137
[4]   The enzymology of sulfur activation during thiamin and biotin biosynthesis [J].
Begley, TP ;
Xi, J ;
Kinsland, C ;
Taylor, S ;
McLafferty, F .
CURRENT OPINION IN CHEMICAL BIOLOGY, 1999, 3 (05) :623-629
[5]   BIOTIN SYNTHASE FROM ESCHERICHIA-COLI, AN INVESTIGATION OF THE LOW-MOLECULAR-WEIGHT AND PROTEIN-COMPONENTS REQUIRED FOR ACTIVITY IN-VITRO [J].
BIRCH, OM ;
FUHRMANN, M ;
SHAW, NM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (32) :19158-19165
[6]  
BJOK GR, 1996, ESCHERICHIA COLI SAL, P861
[7]   EXPRESSION, NUCLEOTIDE-SEQUENCE AND MUTATIONAL ANALYSIS OF 2 OPEN READING FRAMES IN THE NIF GENE REGION OF ANABAENA SP STRAIN PCC-7120 [J].
BORTHAKUR, D ;
BASCHE, M ;
BUIKEMA, WJ ;
BORTHAKUR, PB ;
HASELKORN, R .
MOLECULAR AND GENERAL GENETICS, 1990, 221 (02) :227-234
[8]   Biotin synthase mechanism:: on the origin of sulphur [J].
Bui, BTS ;
Florentin, D ;
Fournier, F ;
Ploux, O ;
Méjean, A ;
Marquet, A .
FEBS LETTERS, 1998, 440 (1-2) :226-230
[9]  
Bui BTS, 2000, EUR J BIOCHEM, V267, P2688
[10]   Role of NifS in maturation of glutamine phosphoribosylpyrophosphhate amidotransferase [J].
Chen, SH ;
Zheng, LM ;
Dean, DR ;
Zalkin, H .
JOURNAL OF BACTERIOLOGY, 1997, 179 (23) :7587-7590