Travelling waves and pattern formation in a model for fungal development

被引:23
作者
Davidson, FA
Sleeman, BD
Rayner, ADM
Crawford, JW
Ritz, K
机构
[1] UNIV LEEDS,DEPT APPL MATH STUDIES,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
[2] UNIV BATH,SCH BIOL & BIOCHEM,BATH BA2 7AY,AVON,ENGLAND
[3] SCOTTISH CROP RES INST,DEPT CELLULAR & ENVIRONM PHYSIOL,UNIT INTEGRAT BIOSCI,DUNDEE DD2 5DA,SCOTLAND
关键词
fungal mycelia; reaction-diffusion; pattern formation;
D O I
10.1007/s002850050067
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Under a variety of conditions, the hyphal density within the expanding outer edge of growing fungal mycelia can be spatially heterogeneous or nearly uniform. We conduct an analysis of a system of reaction-diffusion equations used to model the growth of fungal mycelia and the subsequent development of macroscopic patterns produced by differing hyphal and hence biomass densities. Both local and global results are obtained using analytical and numerical techniques. The emphasis is on qualitative results, including the effects of changes in parameter values on the structure of the solution set.
引用
收藏
页码:589 / 608
页数:20
相关论文
共 25 条
[1]  
[Anonymous], 1990, SPECTRAL THEORY DIFF
[2]  
[Anonymous], ECOLOGY PHYSL FUNGAL
[3]   PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS [J].
BENJACOB, E ;
BRAND, H ;
DEE, G ;
KRAMER, L ;
LANGER, JS .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) :348-364
[4]  
BERZINS M, 1990, SCI SOFTWARE SYSTEMS
[5]   Context-dependent macroscopic patterns in growing and interacting mycelial networks [J].
Davidson, FA ;
Sleeman, BD ;
Rayner, ADM ;
Crawford, JW ;
Ritz, K .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1996, 263 (1372) :873-880
[6]  
DAVIDSON FA, IN PRESS MATH COMPUT
[7]  
EDELSTEIN L, 1983, J THEOR BIOL, V108, P187
[8]   MODELS FOR BRANCHING NETWORKS IN 2 DIMENSIONS [J].
EDELSTEINKESHET, L ;
ERMENTROUT, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (04) :1136-1157
[9]  
Erdelyi A., 1956, ASYMPTOTIC EXPANSION
[10]  
Goodwin Brian., 1994, LEOPARD CHANGED ITS