Identification of target genes for EWS/ATF-1 chimeric transcription factor

被引:27
作者
Jishage, M
Fujino, T
Yamazaki, Y
Kuroda, H
Nakamura, T
机构
[1] Japanese Fdn Canc Res, Inst Canc, Dept Carcinogenesis, Toshima Ku, Tokyo 1708455, Japan
[2] Tokyo Med & Dent Univ, Dept Orthoped, Fac Med, Tokyo 1130034, Japan
基金
日本学术振兴会;
关键词
clear cell sarcoma; EWS/ATF-1; transcription factor; target gene; POSH;
D O I
10.1038/sj.onc.1206074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin immunoprecipitation is a useful technique to detect in vivo direct interaction between any transcription factor and its binding site on genomic DNA. We applied this skill to identify the direct target gene for EWS/ATF-1 by coupling with a GFP reporter assay. This novel approach isolated 62 of cloned DNA fragments responding upon EWS/ATF-1 expression and 16 of 62 clones included putative ATF-1 binding sites. Further analysis revealed that six of the cloned fragments included possible regulatory regions of ATM, GPP34, ARNT2, NKX6.1, NYD-SP28 and POSH. Most of these clones upregulated reporter activity by overexpression of EWS/ATF-1, suggesting that putative ATF-1 binding sites in these clones are functional elements for ATF-1 in vivo. Consistently, endogenous expression of these genes was upregulated by EWS/ATF-1. Interestingly, the clone containing the promoter region of POSH, which is known to be a strong inducer of apoptosis, repressed reporter activity by overexpression of EWS/ATF-1. Correspondingly, EWS/ATF-1 expression decreased endogenous POSH expression, suggesting that six isolated genes may be involved in direct regulation by EWS/ATF-1. Moreover, induction of POSH brought apoptotic cell death to KAS, the clear cell sarcoma (CCS) cell line, suggesting that repressed expression of POSH in CCS may be relevant to the normal signaling pathway in apoptosis.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 40 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   Proteomics characterization of abundant Golgi membrane proteins [J].
Bell, AW ;
Ward, MA ;
Blackstock, WP ;
Freeman, HNM ;
Choudhary, JS ;
Lewis, AP ;
Chotai, D ;
Fazel, A ;
Gushue, JN ;
Paiement, J ;
Palcy, S ;
Chevet, E ;
Lafrenière-Roula, M ;
Solari, R ;
Thomas, DY ;
Rowley, A ;
Bergeron, JJM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (07) :5152-5165
[3]   EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II:: Interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes [J].
Bertolotti, A ;
Melot, T ;
Acker, J ;
Vigneron, M ;
Delattre, O ;
Tora, L .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (03) :1489-1497
[4]  
BRAUN BS, 1995, MOL CELL BIOL, V15, P4623
[5]  
BROWN AD, 1995, ONCOGENE, V10, P1749
[6]   DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis [J].
Dasika, GK ;
Lin, SCJ ;
Zhao, S ;
Sung, P ;
Tomkinson, A ;
Lee, EYHP .
ONCOGENE, 1999, 18 (55) :7883-7899
[7]   GENE FUSION WITH AN ETS DNA-BINDING DOMAIN CAUSED BY CHROMOSOME-TRANSLOCATION IN HUMAN TUMORS [J].
DELATTRE, O ;
ZUCMAN, J ;
PLOUGASTEL, B ;
DESMAZE, C ;
MELOT, T ;
PETER, M ;
KOVAR, H ;
JOUBERT, I ;
DEJONG, P ;
ROULEAU, G ;
AURIAS, A ;
THOMAS, G .
NATURE, 1992, 359 (6391) :162-165
[8]  
Enzinger FM, 1995, Soft Tissue Tumors, V3rd, P889
[9]  
Fujimura Y, 1996, ONCOGENE, V12, P159
[10]   Inhibition of myeloid differentiation by Hoxa9, Hoxb8, and Meis homeobox genes [J].
Fujino, T ;
Yamazaki, Y ;
Largaespada, DA ;
Jenkins, NA ;
Copeland, NG ;
Hirokawa, K ;
Nakamura, T .
EXPERIMENTAL HEMATOLOGY, 2001, 29 (07) :856-863