Using a recently introduced electrophoresis system [Kashino et al. (2001) Electrophoresis 22: 1004], components of low-molecular-mass polypeptides were analyzed in detail in photosystem 11 (PSII) complexes isolated from a thermophilic cyanobacterium, Thermosynechococcus vulcanus (formerly, Synechococcus vulcanus). POE, the large subunit polypeptide of cytochrome b(559), showed an apparent molecular mass much lower than the expected one. The unusually large mobility could be attributed to the large intrinsic net electronic charge. All other Coomassie-stained polypeptides were identified by N-terminal sequencing. In addition to the well-known cyanobacterial PSII polypeptides, such as ME, F, H, 1, L, M, U, V and X, the presence of MY, PsbZ and Psb27 was also confirmed in the isolated PSII complexes. Furthermore, the whole amino acid sequence was determined for the polypeptide which was known as PsbN. The whole amino acid sequence revealed that this polypeptide was identical to PsbTc which has been found in higher plants and green algae. These results strongly suggest that PsbN is not a member of the PSII complex. It is also shown that cyanobacteria have cytochrome b(559) in the high potential form as in higher plants.