Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia

被引:118
作者
Li, Yonghai
Chu, Niansheng
hu, Aia Hu
Gran, Bruno
Rostami, Abdolmohamad
Zhang, Guang-Xian
机构
[1] Thomas Jefferson Univ, Dept Neurol, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ, Dept Anesthesiol, Philadelphia, PA 19107 USA
基金
美国国家卫生研究院;
关键词
multiple sclerosis; CNS; microglia; IL-23;
D O I
10.1093/brain/awl273
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
IL-12 has long been considered important in the pathogenesis of multiple sclerosis. However, evidence from recent studies strongly supports the critical role of IL-12-related proinflammatory cytokine IL-23, but not IL-12, in the development of experimental autoimmune encephalomyelitis (EAE), an animal model of this disease. The role of IL-23 in the CNS immunity of multiple sclerosis patients has not been elucidated; nor is it known whether human microglia produce this cytokine. In this study we investigated the expression of IL-23p19 and p40, with its key subunit p19 as the focus, in histologically characterized CNS specimens from multiple sclerosis and control cases using in situ hybridization and immunohistochemistry. A significant increase in mRNA expression and protein production of both subunits of IL-23 was found in lesion tissues compared with non-lesion tissues. Double staining showed that activated macrophages/microglia were an important source of IL-23p19 in active and chronic active multiple sclerosis lesions. We also detected IL-23p19 expression in mature dendritic cells which were preferentially located in the perivascular cuff of active lesions. The finding that human microglia produce IL-23 was further confirmed by the inducible production of IL-23p19 and p40 in cultured human microglia in vitro upon different Toll-like receptor stimulations. Taken together, these findings on the expression of IL-23p19 in multiple sclerosis lesions may lead to a better understanding of the events culminating in human multiple sclerosis.
引用
收藏
页码:490 / 501
页数:12
相关论文
共 43 条
[1]   Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17 [J].
Aggarwal, S ;
Ghilardi, N ;
Xie, MH ;
de Sauvage, FJ ;
Gurney, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (03) :1910-1914
[2]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[3]  
Aloisi F, 1999, J IMMUNOL, V162, P1384
[4]   Chemokines and glial cells: A complex network in the central nervous system [J].
Ambrosini, E ;
Aloisi, F .
NEUROCHEMICAL RESEARCH, 2004, 29 (05) :1017-1038
[5]   Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12 [J].
Becher, B ;
Durell, BG ;
Noelle, RJ .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 110 (04) :493-497
[6]   IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis [J].
Becher, B ;
Durell, BG ;
Noelle, RJ .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (08) :1186-1191
[7]   Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis [J].
Benveniste, EN .
JOURNAL OF MOLECULAR MEDICINE-JMM, 1997, 75 (03) :165-173
[8]   Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells [J].
Bettelli, E ;
Carrier, YJ ;
Gao, WD ;
Korn, T ;
Strom, TB ;
Oukka, M ;
Weiner, HL ;
Kuchroo, VK .
NATURE, 2006, 441 (7090) :235-238
[9]   Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis [J].
Carson, MJ .
GLIA, 2002, 40 (02) :218-231
[10]   Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis [J].
Chen, Y ;
Langrish, CL ;
Mckenzie, B ;
Joyce-Shaikh, B ;
Stumhofer, JS ;
McClanahan, T ;
Blumenschein, W ;
Churakovsa, T ;
Low, J ;
Presta, L ;
Hunter, CA ;
Kastelein, RA ;
Cua, DJ .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (05) :1317-1326