In Salmomella typhimurium seven tRNA species specific for leucine, proline and arginine have 1-methylguanosine (m(1)G) next to and 3' of the anticodon (position 37 of tRNA), five tRNA species specific for phenylalanine, serine, tyrosine, cysteine and tryptophan have 2-methylthio-N-6-(cis-hydroxy)isopentenyladenosine (ms(2)io(6)A) in the same position of the tRNA, and four tRNA species, specific for leucine and proline, have pseudouridine (Psi) as the last 3' nucleotide in the anticodon loop (position 38) or in the anticodon stem (positions 39 and 40). Mutants deficient in the synthesis of these modified nucleosides have been used to study their role in the first step of translation elongation, i.e. the aa-tRNA selection step in which the ternary complex (EF-Tu-GTP-aa-tRNA) binds at the cognate codon in the A-site on the mRNA programmed ribosome. We have found that the Psi present in the anticodon loop (position 38) stimulates the selection of tRNA specific for leucine whereas Psi in the anticodon stem did not affect the selection of tRNA specific for proline. The m(1)G37 strongly stimulates the rate of selection of the three tRNA species specific for proline and one tRNA species specific for arginine but has only minor or no effect on the selection of the three tRNA species specific for leucine. Likewise, the ms(2)io(6)A, present in the same position as m(1)G37 but in another subset of tRNA species, stimulates the selection of tRNA specific for tyrosine, stimulates to some extent also tRNA species specific for cysteine and tryptophan, but has no influence on the rate of selection of tRNA specific for phenylalanine. We conclude that function of m(1)G and ms(2)io(6)A present next to and 3' of the anticodon influences the in vivo aa-tRNA selection in a tRNA-dependent manner. (C) 1997 Academic Press Limited.