Emerging biological materials through molecular self-assembly

被引:439
作者
Zhang, SG [1 ]
机构
[1] MIT, Ctr Biomed Engn 56 341, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
chemical complementarity; structural compatibility; hydrophobic interactions; molecular engineering; nanostructures; biological scaffold;
D O I
10.1016/S0734-9750(02)00026-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding of new materials at the molecular level has become increasingly critical for a new generation of nanomaterials for nanotechnology, namely, the design, synthesis and fabrication of nanodevices at the molecular scale. New technology through molecular self-assembly as a fabrication tool will become tremendously important in the coming decades. Basic engineering principles for microfabrication can be learned by understanding the molecular self-assembly phenomena. Self-assembly phenomenon is ubiquitous in nature. The key elements in molecular self-assembly are chemical complementarity and structural compatibility through noncovalent interactions. We have defined the path to understand these principles. Numerous self-assembling systems have been developed ranging from models to the study of protein folding and protein conformational diseases, to molecular electronics, surface engineering, and nanotechnology, Several distinctive types of self-assembling peptide systems have been developed. Type I, "molecular Lego" forms a hydrogel scaffold for tissue engineering; Type II, "molecular switch" as a molecular actuator; Type III, "molecular hook" and "molecular velcro" for surface engineering; Type IV, peptide nanotubes and nanovesicles, or "molecular capsule" for protein and gene deliveries and Type V, "molecular cavity" for biomineralization. These self-assembling peptide systems are simple, versatile and easy to produce. These self-assembly systems represent a significant advance in the molecular engineering for diverse technological innovations. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:321 / 339
页数:19
相关论文
共 46 条
[1]   Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes [J].
Aggeli, A ;
Bell, M ;
Boden, N ;
Keen, JN ;
Knowles, PF ;
McLeish, TCB ;
Pitkeathly, M ;
Radford, SE .
NATURE, 1997, 386 (6622) :259-262
[2]   Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers [J].
Aggeli, A ;
Nyrkova, IA ;
Bell, M ;
Harding, R ;
Carrick, L ;
McLeish, TCB ;
Semenov, AN ;
Boden, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :11857-11862
[3]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[4]   Conformational behavior of ionic self-complementary peptides [J].
Altman, M ;
Lee, P ;
Rich, A ;
Zhang, SG .
PROTEIN SCIENCE, 2000, 9 (06) :1095-1105
[5]  
[Anonymous], NATURE CHEM BOND MOL
[6]   Engineering and design - Editorial overview [J].
Baker, D ;
DeGrado, WF .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1999, 9 (04) :485-486
[7]   MATERIALS SCIENCE - POLYMERS MADE TO MEASURE [J].
BALL, P .
NATURE, 1994, 367 (6461) :323-324
[8]   Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation [J].
Bieri, C ;
Ernst, OP ;
Heyse, S ;
Hofmann, KP ;
Vogel, H .
NATURE BIOTECHNOLOGY, 1999, 17 (11) :1105-1108
[9]  
Bong DT, 2001, ANGEW CHEM INT EDIT, V40, P988, DOI 10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO
[10]  
2-N