The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death

被引:143
作者
Chen, Ruiqiang [1 ,2 ,3 ]
Sun, Shulan [1 ,2 ,3 ]
Wang, Chun [1 ,2 ,3 ]
Li, Yansha [1 ,2 ,3 ]
Liang, Yan [1 ,2 ]
An, Fengying [1 ,2 ,3 ]
Li, Chao [1 ,2 ,3 ]
Dong, Haili [1 ,2 ,3 ]
Yang, Xiaohui [1 ,2 ]
Zhang, Jian [1 ,2 ]
Zuo, Jianru [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Genet & Dev Biol, Natl Plant Gene Res Ctr Beijing, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
GSNOR1/HOT5/PAR2; nitric oxide; paraquat; cell death; superoxide; DEPENDENT FORMALDEHYDE DEHYDROGENASE; NITRIC-OXIDE; ARABIDOPSIS-THALIANA; NITROSYLATED PROTEINS; SUPEROXIDE-DISMUTASE; INCREASED RESISTANCE; PLANT-GROWTH; PARAQUAT; DAMAGE; STRESS;
D O I
10.1038/cr.2009.117
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Metabolism of S-nitrosoglutathione (GSNO), a major biologically active nitric oxide (NO) species, is catalyzed by the evolutionally conserved GSNO reductase (GSNOR). Previous studies showed that the Arabidopsis GSNOR1/HOT5 gene regulates salicylic acid signaling and thermotolerance by modulating the intracellular S-nitrosothiol level. Here, we report the characterization of the Arabidopsis paraquat resistant2-1 (par2-1) mutant that shows an anti-cell death phenotype. The production of superoxide in par2-1 is comparable to that of wild-type plants when treated by paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride), suggesting that PAR2 acts downstream of superoxide to regulate cell death. PAR2, identified by positional cloning, is shown to be identical to GSNOR1/HOT5. The par2-1 mutant carries a missense mutation in a highly conserved glycine, which renders the mutant protein unstable. Compared to wild type, par2-1 mutant has a higher NO level, as revealed by staining with 4,5-diaminofluorescein diacetate. Consistent with this result, wild-type plants treated with an NO donor display resistance to paraquat. Interestingly, the GSNOR1/HOT5/PAR2 protein level, other than its steady-state mRNA level, is induced by paraquat, but is reduced by NO donors. Taken together, these results suggest that GSNOR1/HOT5/PAR2 plays an important role in regulating cell death in plant cells through modulating intracellular NO level.
引用
收藏
页码:1377 / 1387
页数:11
相关论文
共 62 条
[1]   Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis [J].
Achkor, H ;
Díaz, M ;
Fernández, MR ;
Biosca, JA ;
Parés, X ;
Martínez, MC .
PLANT PHYSIOLOGY, 2003, 132 (04) :2248-2255
[2]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[3]   Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen [J].
Arisi, ACM ;
Cornic, G ;
Jouanin, L ;
Foyer, CH .
PLANT PHYSIOLOGY, 1998, 117 (02) :565-574
[4]   Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways [J].
Asai, T ;
Stone, JM ;
Heard, JE ;
Kovtun, Y ;
Yorgey, P ;
Sheen, J ;
Ausubel, FM .
PLANT CELL, 2000, 12 (10) :1823-1835
[5]   LETHAL HYDROXYL RADICAL PRODUCTION IN PARAQUAT-TREATED PLANTS [J].
BABBS, CF ;
PHAM, JA ;
COOLBAUGH, RC .
PLANT PHYSIOLOGY, 1989, 90 (04) :1267-1270
[6]   Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue [J].
Belenghi, Beatrice ;
Romero-Puertas, Maria C. ;
Vercammen, Dominique ;
Brackenier, Anouk ;
Inze, Dirk ;
Delledonne, Massimo ;
Van Breusegem, Frank .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (02) :1352-1358
[7]   Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers [J].
Beligni, MV ;
Fath, A ;
Bethke, PC ;
Lamattina, L ;
Jones, RL .
PLANT PHYSIOLOGY, 2002, 129 (04) :1642-1650
[8]   Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants [J].
Beligni, MV ;
Lamattina, L .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 1999, 3 (03) :199-208
[9]   MANGANESE SUPEROXIDE-DISMUTASE CAN REDUCE CELLULAR-DAMAGE MEDIATED BY OXYGEN RADICALS IN TRANSGENIC PLANTS [J].
BOWLER, C ;
SLOOTEN, L ;
VANDENBRANDEN, S ;
DERYCKE, R ;
BOTTERMAN, J ;
SYBESMA, C ;
VANMONTAGU, M ;
INZE, D .
EMBO JOURNAL, 1991, 10 (07) :1723-1732
[10]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3