Galerkin-Legendre spectral method for the 3D Helmholtz equation

被引:22
作者
Auteri, F
Quartapelle, L
机构
[1] Politecn Milan, Dipartimento Ingn Aerospaziale, I-20156 Milan, Italy
[2] Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy
关键词
three-dimensional Helmholtz equation; Galerkin-Legendre spectral method; nonhomogeneous Dirichlet condition; lifting of the Dirichlet datum; separation of variables; direct product structure; diagonalization algorithm; direct solution method; fast elliptic spectral solver;
D O I
10.1006/jcph.2000.6504
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Galerkin-Legendre spectral method for the direct solution of Poisson and Helmholtz equations in a three-dimensional rectangular domain is presented, The method extends Jie Shen's algorithm for 2D problems by using the diagonalization of the three mass matrices in the three spatial directions and fully exploits the direct product nature of the spectral approximation. The Dirichlet boundary values are taken into account by means of a discrete lifting performed in three subsequent steps and built upon Gauss-Legendre quadrature points. A few numerical tests illustrate the accuracy and efficiency of the method. (C) 2000 Academic Press.
引用
收藏
页码:454 / 483
页数:30
相关论文
共 14 条
[1]  
ANDERSON E, 1995, LAPACK
[2]  
[Anonymous], 1989, CHEBYSHEV FOURIER SP
[3]   Galerkin spectral method for the vorticity and stream function equations [J].
Auteri, F ;
Quartapelle, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :306-332
[4]  
Bernardi Christine., 1992, APPROXIMATIONS SPECT
[5]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[6]  
Gottlieb D., 1977, NUMERICAL ANAL SPECT
[7]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[8]   ACCURATE SOLUTION OF POISSONS EQUATION BY EXPANSION IN TSCHEBYSCHEFF POLYNOMIALS [J].
HAIDVOGEL, DB ;
ZANG, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (02) :167-180
[9]   TSCHEBYSCHEV 3-D SPECTRAL AND 2-D PSEUDOSPECTRAL SOLVERS FOR THE HELMHOLTZ-EQUATION [J].
HALDENWANG, P ;
LABROSSE, G ;
ABBOUDI, S ;
DEVILLE, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :115-128
[10]  
Lynch R. E., 1964, Numer. Math., V6, P185