Instanton picture of the spin tunnelling in the Lipkin-Meshkov-Glick model

被引:18
作者
Belinicher, VI [1 ]
Providencia, C [1 ]
daProvidencia, J [1 ]
机构
[1] RUSSIAN ACAD SCI,INST SEMICOND PHYS,NOVOSIBIRSK 630090,RUSSIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 16期
关键词
D O I
10.1088/0305-4470/30/16/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A consistent theory of the ground-state energy and its splitting due to the process of tunnelling for the Lipkin-Meshkov-Glick (LMG) model is presented. We calculate accurately the trivial and the instanton saddle-point contributions to the functional integral for the partition function of the model, in terms of the spin coherent states. We show that such a calculation has to be performed very accurately taking into account the discrete nature of the functional integral. This accurate consideration leads to the replacement of the magnitude of the spin s by s + 1/2, in the formula for the ground-state splitting obtained by a naive continuous method. We compare the numerical calculation of the ground-state energy and the splitting due to tunnelling with the results obtained by the quasiclassical method and obtain excellent agreement.
引用
收藏
页码:5633 / 5643
页数:11
相关论文
共 14 条
[1]   FATE OF FALSE VACUUM .2. 1ST QUANTUM CORRECTIONS [J].
CALLAN, CG ;
COLEMAN, S .
PHYSICAL REVIEW D, 1977, 16 (06) :1762-1768
[2]   QUANTUM INTERFERENCE IS SMALL MAGNETIC PARTICLES [J].
CHUDNOVSKY, EM ;
DIVINCENZO, DP .
PHYSICAL REVIEW B, 1993, 48 (14) :10548-10551
[3]   QUANTUM TUNNELING OF MAGNETIZATION IN SMALL FERROMAGNETIC PARTICLES [J].
CHUDNOVSKY, EM ;
GUNTHER, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (08) :661-664
[4]  
Coleman S., 1985, Aspects of Symmetry
[5]   SPIN TUNNELING IN THE SEMICLASSICAL LIMIT [J].
ENZ, M ;
SCHILLING, R .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (11) :1765-1770
[6]  
Galyshev V. Yu., 1995, Journal of Experimental and Theoretical Physics, V81, P962
[7]  
Klauder J. R, 1985, Coherent States
[8]   BOSON REALIZATIONS OF LIE-ALGEBRAS WITH APPLICATIONS TO NUCLEAR-PHYSICS [J].
KLEIN, A ;
MARSHALEK, ER .
REVIEWS OF MODERN PHYSICS, 1991, 63 (02) :375-558
[9]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .I. EXACT SOLUTIONS AND PERTURBATION THEORY [J].
LIPKIN, HJ ;
MESHKOV, N ;
GLICK, AJ .
NUCLEAR PHYSICS, 1965, 62 (02) :188-&
[10]   SUPPRESSION OF TUNNELING BY INTERFERENCE IN HALF-INTEGER-SPIN PARTICLES [J].
LOSS, D ;
DIVINCENZO, DP ;
GRINSTEIN, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (22) :3232-3235