Applying knowledge discovery to predict water-supply consumption

被引:26
作者
An, AJ
Chan, C
Shan, N
Cercone, N
Ziarko, W
机构
[1] University of Regina, Sask.
[2] Dept. of Computer Science, Univ. of Regina, Regina
[3] Computer Science Dept., Faculty of Mathematics, Univ. of Waterloo, Waterloo
来源
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS | 1997年 / 12卷 / 04期
关键词
D O I
10.1109/64.608199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A rough-set method generates prediction rules from observed data, using statistical information inherent in the data to handle incomplete and ambiguous training samples. Experimental results indicate that this method provides more precise information than is available through knowledge acquisition from human experts.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 11 条
  • [1] [Anonymous], MACHINE LEARNING
  • [2] Katzberg J. D., 1994, Rough Sets, Fuzzy Sets and Knowledge Discovery. Proceedings of the International Workshop on Rough Sets and Knowledge Discovery (RSKD'93), P167
  • [3] MICHALSKI RS, 1983, MACHINE LEARNING, V1
  • [4] ROUGH SETS - PROBABILISTIC VERSUS DETERMINISTIC APPROACH
    PAWLAK, Z
    WONG, SKM
    ZIARKO, W
    [J]. INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1988, 29 (01): : 81 - 95
  • [5] Pawlak Z., 1991, Rough sets: Theoretical aspects of reasoning about data, V9, DOI DOI 10.1007/978-94-011-3534-4
  • [6] QUEVEDO J, 1988, COMPUTER APPL WATER, V1, P268
  • [7] Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877
  • [8] WONG SKM, 1986, P 6 INT WORKSH EXP S, P713
  • [9] A method for computing all maximally general rules in attribute-value systems
    Ziarko, W
    Shan, N
    [J]. COMPUTATIONAL INTELLIGENCE, 1996, 12 (02) : 223 - 234
  • [10] VARIABLE PRECISION ROUGH SET MODEL
    ZIARKO, W
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1993, 46 (01) : 39 - 59