Long-distance decoy-state quantum key distribution in optical fiber

被引:275
作者
Rosenberg, Danna
Harrington, Jim W.
Rice, Patrick R.
Hiskett, Philip A.
Peterson, Charles G.
Hughes, Richard J.
Lita, Adriana E.
Nam, Sae Woo
Nordholt, Jane E.
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Natl Inst Stand & Technol, Boulder, CO 80305 USA
关键词
D O I
10.1103/PhysRevLett.98.010503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical existence of photon-number-splitting attacks creates a security loophole for most quantum key distribution (QKD) demonstrations that use a highly attenuated laser source. Using ultralow-noise, high-efficiency transition-edge sensor photodetectors, we have implemented the first version of a decoy-state protocol that incorporates finite statistics without the use of Gaussian approximations in a one-way QKD system, enabling the creation of secure keys immune to photon-number-splitting attacks and highly resistant to Trojan horse attacks over 107 km of optical fiber.
引用
收藏
页数:4
相关论文
共 27 条
[1]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[2]  
Bennett C. H., 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[4]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[5]  
BRASSARD G, 1994, P WORKSH THEOR APPL, P410
[6]   Trojan-horse attacks on quantum-key-distribution systems [J].
Gisin, N ;
Fasel, S ;
Kraus, B ;
Zbinden, H ;
Ribordy, G .
PHYSICAL REVIEW A, 2006, 73 (02)
[7]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[8]   Unconditionally secure quantum key distribution over 50 km of standard telecom fibre [J].
Gobby, C ;
Yuan, ZL ;
Shields, AJ .
ELECTRONICS LETTERS, 2004, 40 (25) :1603-1605
[9]  
Gottesman D, 2004, QUANTUM INF COMPUT, V4, P325
[10]  
HARRINGTON JS, IN PRESS