Role of malonyl-CoA in heart disease and the hypothalamic control of obesity

被引:71
作者
Folmes, Clifford D. L. [1 ]
Lopaschuk, Gary D. [1 ]
机构
[1] Univ Alberta, Cardiovasc Res Grp, Edmonton, AB T6G 2S2, Canada
基金
加拿大健康研究院;
关键词
malonyl-CoA; fatty acid oxidation; carnitine palmitoyltransferase 1; malonyl-CoA decarboxylase; AMP-activated protein kinase; acetyl-CoA carboxylase;
D O I
10.1016/j.cardiores.2006.10.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Obesity is an important contributor to the risk of developing insulin resistance, diabetes, and heart disease. Alterations in tissue levels of malonyl-CoA have the potential to impact on the severity of a number of these disorders. This review will focus on the emerging role of malonyl-CoA as a key "metabolic effector" of both obesity and cardiac fatty acid oxidation. In addition to being a substrate for fatty acid biosynthesis, malonyl-CoA is a potent inhibitor of mitochondrial carnitine palmitoyltransferase (CPT) 1, a key enzyme involved in mitochondrial fatty acid uptake. A decrease in myocardial malonyl-CoA levels and an increase in CPTI activity contribute to an increase in cardiac fatty acid oxidation. An increase in malonyl-CoA degradation due to increased malonyl-CoA decarboxylase (MCD) activity may be one mechanism responsible for this decrease in malonyl-CoA. Another mechanism involves the inhibition of acetyl-CoA carboxylase (ACC) synthesis of malonyl-CoA, due to AMP-activated protein kinase (AMPK) phosphorylation of ACC. Recent studies have demonstrated a role of malonyl-CoA in the hypothalamus as a regulator of food intake. Increases in hypothalamic malonyl-CoA and inhibition of CPTI are associated with a decrease in food intake in mice and rats, while a decrease in hypothalamic malonyl-CoA increases food intake and weight gain. The exact mechanism(s) responsible for these effects of malonyl-CoA are not clear, but have been proposed to be due to an increase in the levels of long chain acyl CoA, which occurs as a result of malonyl-CoA inhibition of CPT L Both hypothalamic and cardiac studies have demonstrated that control of malonyl-CoA levels has an important impact on obesity and heart disease. Targeting enzymes that control malonyl-CoA levels may be an important therapeutic approach to treating heart disease and obesity. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 122 条
[1]   Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-α activator [J].
Aasum, E ;
Belke, DD ;
Severson, DL ;
Riemersma, RA ;
Cooper, M ;
Andreassen, M ;
Larsen, TS .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 283 (03) :H949-H957
[2]   Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2 [J].
Abu-Elheiga, L ;
Matzuk, MM ;
Abo-Hashema, KAH ;
Wakil, SJ .
SCIENCE, 2001, 291 (5513) :2613-2616
[3]   AMP-activated protein kinase plays a role in the control of food intake [J].
Andersson, U ;
Filipsson, K ;
Abbott, CR ;
Woods, A ;
Smith, K ;
Bloom, SR ;
Carling, D ;
Small, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :12005-12008
[4]   Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats [J].
Atkinson, LL ;
Kozak, R ;
Kelly, SE ;
Onay-Besikci, A ;
Russell, JC ;
Lopaschuk, GD .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 284 (05) :E923-E930
[5]   Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis [J].
Atkinson, LL ;
Fischer, MA ;
Lopaschuk, GD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (33) :29424-29430
[6]   Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice [J].
Belke, DD ;
Larsen, TS ;
Gibbs, EM ;
Severson, DL .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 279 (05) :E1104-E1113
[7]  
Benoit SC, 2002, J NEUROSCI, V22, P9048
[8]   DISSOCIATION BETWEEN CONTRACTILE FUNCTION AND OXIDATIVE-METABOLISM IN POSTISCHEMIC MYOCARDIUM - ATTENUATION BY RUTHENIUM RED ADMINISTERED DURING REPERFUSION [J].
BENZI, RH ;
LERCH, R .
CIRCULATION RESEARCH, 1992, 71 (03) :567-576
[9]   MALONYL COENZYME-A DECARBOXYLASE DEFICIENCY [J].
BROWN, GK ;
SCHOLEM, RD ;
BANKIER, A ;
DANKS, DM .
JOURNAL OF INHERITED METABOLIC DISEASE, 1984, 7 (01) :21-26
[10]   Metabolic effects of insulin on cardiomyocytes from control and diabetic db/db mouse hearts [J].
Carroll, R ;
Carley, AN ;
Dyck, JRB ;
Severson, DL .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2005, 288 (05) :E900-E906