Detection of three common translocation breakpoints in non-Hodgkin's lymphomas by fluorescence in situ hybridization on routine paraffin-embedded tissue sections

被引:67
作者
Haralambieva, E
Kleiverda, K
Mason, DY
Schuuring, E
Kluin, PM
机构
[1] Leiden Univ, Med Ctr, Dept Pathol, Leiden, Netherlands
[2] John Radcliffe Hosp, Nuffield Dept Clin Lab Sci, Oxford OX3 9DU, England
[3] John Radcliffe Hosp, Dept Haematol, Oxford OX3 9DU, England
关键词
non-Hodgkin's lymphoma; translocations; FISH; paraffin sections;
D O I
10.1002/path.1197
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Non-random chromosomal translocations are specifically involved in the pathogenesis of many non-Hodgkin's lymphomas and have clinical implications as diagnostic and/or prognostic markers. Their detection is often impaired by technical problems, including the distribution of the breakpoints over large genomic areas. This study reports a fluorescence in situ hybridization (FISH) method which allows the detection of specific chromosomal breakpoints in tissue sections from routinely fixed, paraffin-embedded samples. Hybridization was performed after demasking the DNA. Previously validated locus-specific probes (cosmids, PACs) flanking the BCL1, BCL2 regions and similar new probes for the MYC breakpoint region were used. The cases studied were five mantle cell lymphomas (MCL) and five follicular lymphomas (FL), selected on the basis of a previously proved t(11;14) and t(14;18) and five randomly chosen Burkitt's lymphomas (BL), as well as 21 negative control samples. In all samples, hybridization signals of sufficient intensity were obtained. Three different algorithms were used to score the hybridization signals in tissue sections, two of them taking into account the nuclei and their signal distribution indicative of chromosomal break, and one only considering the colocalization or segregation of the signals. In control tissues, these algorithms resulted in cut-off levels of 9.1%, 1.3%, or 10.0%. In the 15 lymphoma samples the percentages of abnormal cells/signals ranged from 28% to 80%, 13% to 49%, and 40% to 70%, respectively. The results indicate that small locus-specific probes can be used in FISH for regular detection of translocation breakpoints on routine paraffin tissue sections. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 33 条
[1]   The Burkitt-like lymphomas: a Southwest Oncology Group study delineating phenotypic, genotypic, and clinical features [J].
Braziel, RM ;
Arber, DA ;
Slovak, ML ;
Gulley, ML ;
Spier, C ;
Kjeldsberg, C ;
Unger, J ;
Miller, TP ;
Tubbs, R ;
Leith, C ;
Fisher, RI ;
Grogan, TM .
BLOOD, 2001, 97 (12) :3713-3720
[2]   Detection of t(2;5) in anaplastic large cell lymphoma - Comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue [J].
Cataldo, KA ;
Jalal, SM ;
Law, ME ;
Ansell, SM ;
Inwards, DJ ;
Fine, M ;
Arber, DA ;
Pulford, KA ;
Strickler, JG .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 1999, 23 (11) :1386-1392
[3]   Detection of 11q13 rearrangements in hematologic neoplasias by double-color fluorescence in situ hybridization [J].
Coignet, LJA ;
Schuuring, E ;
Kibbelaar, RE ;
Raap, TK ;
Kleiverda, KK ;
Bertheas, MF ;
Wiegant, J ;
Beverstock, G ;
Kluin, PM .
BLOOD, 1996, 87 (04) :1512-1519
[4]   Subtracted, unique-sequence, in situ hybridization -: Experimental and diagnostic applications [J].
Davison, JM ;
Morgan, TW ;
Hsi, BL ;
Xiao, S ;
Fletcher, JA .
AMERICAN JOURNAL OF PATHOLOGY, 1998, 153 (05) :1401-1409
[5]   The World Health Organization classification of hematological malignancies report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997 [J].
Harris, NL ;
Jaffe, ES ;
Diebold, J ;
Flandrin, G ;
Muller-Hermelink, HK ;
Vardiman, J ;
Lister, TA ;
Bloomfield, CD .
MODERN PATHOLOGY, 2000, 13 (02) :193-207
[6]  
HARRIS NL, 1994, BLOOD, V84, P1361
[7]   Primary cutaneous Ewing's sarcoma - Immunophenotypic and molecular cytogenetic evaluation of five cases [J].
Hasegawa, SL ;
Davison, JM ;
Rutten, A ;
Fletcher, JA ;
Fletcher, CDM .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 1998, 22 (03) :310-318
[8]  
HORSMAN DE, 1995, AM J CLIN PATHOL, V103, P472
[9]  
JOOS S, 1992, CANCER RES, V52, P6547
[10]   The impact of the new fish technologies on the cytogenetics of haematological malignancies [J].
Kearney, L .
BRITISH JOURNAL OF HAEMATOLOGY, 1999, 104 (04) :648-658