Statistical interpretation of the importance of phase information in signal and image reconstruction

被引:31
作者
Ni, Xuelei [1 ]
Huo, Xiaoming
机构
[1] Kennesaw State Univ, Dept Math & Stat, Kennesaw, GA 30144 USA
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
reconstruction; Fourier transform; importance of phases;
D O I
10.1016/j.spl.2006.08.025
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the Fourier representation of signals and images, phases have long been realized to be more important than magnitudes in the reconstruction. In this paper, a justification is presented from a statistical viewpoint. The main result shows that under random magnitudes, the DC component of the inverse Fourier transform converges to a positive value, while all the other components converge to zero. For random phases, such a result does not exist. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:447 / 454
页数:8
相关论文
共 8 条
[1]  
Goodman J. W., 1984, STAT OPTICS
[2]   NOVEL CRITERIA OF UNIQUENESS FOR SIGNAL RECONSTRUCTION FROM PHASE [J].
MA, CX .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (04) :989-992
[3]   THE IMPORTANCE OF PHASE IN SIGNALS [J].
OPPENHEIM, AV ;
LIM, JS .
PROCEEDINGS OF THE IEEE, 1981, 69 (05) :529-541
[4]  
OPPENHEIM AV, 1979, P IEEE INT C AC SPEE, P632
[5]   SOURCE CODING OF DISCRETE FOURIER-TRANSFORM [J].
PEARLMAN, WA ;
GRAY, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (06) :683-692
[6]  
SRINIVASAN R, 1966, INDIAN J PURE AP PHY, V4, P178
[7]  
Stark H., 1987, IMAGE RECOVERY THEOR
[8]  
STOCKHAM TG, 1975, P IEEE, V63, P678, DOI 10.1109/PROC.1975.9800