Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint

被引:33
作者
Chum, O [1 ]
Werner, T [1 ]
Matas, J [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Cybernet, Ctr Machine Percept, Prague 16627 6, Czech Republic
来源
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1 | 2004年
关键词
D O I
10.1109/ICPR.2004.1334020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The efficiency of epipolar geometry estimation by RANSAC is improved by exploiting the oriented epipolar constraint. Performance evaluation shows that the enhancement brings up to a two-fold speed-up. The orientation test is simple to implement, is universally applicable and takes negligible fraction of time compared with epipolar geometry computation.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 17 条
[1]  
Chum O., 2004, P ACCV, V2, P812
[2]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[3]  
Harris C., 1988, Alvey Vis. Conf., V15, P10, DOI DOI 10.5244/C.2.23
[4]  
Hartley R., 2000, MULTIPLE VIEW GEOMET
[5]  
LAVEAU S, 1994, INT C PATT RECOG, P689, DOI 10.1109/ICPR.1994.576404
[6]  
LAVEAU S, 1996, P ECCV, V1, P149
[7]  
Matas J, 2002, INT C PATT RECOG, P363, DOI 10.1109/ICPR.2002.1047471
[8]  
Matas J., 2002, Electronic Proceedings of the 13th British Machine Vision Conference, P384
[9]  
MIKOLAJCZYK K, 2002, P ECCV, V1, P128
[10]  
Nistér D, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P199