Drought avoidance and the effect of local topography on trees in the understorey of Bornean lowland rain forest

被引:65
作者
Gibbons, JM [1 ]
Newbery, DM [1 ]
机构
[1] Univ Bern, Inst Plant Sci, CH-3013 Bern, Switzerland
关键词
drought adaptation; leaf water potential; root structure; soil water potential; understorey trees;
D O I
10.1023/A:1021210532510
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The water relations of two tree species in the Euphorbiaceae were compared to test in part a hypothesis that the forest understorey plays an integral role in drought response. At Danum, Sabah, the relatively common species Dimorphocalyx muricatus is associated with ridges whilst another species, Mallotus wrayi, occurs widely both on ridges and lower slopes. Sets of subplots within two 4 -ha permanent plots in this lowland dipterocarp rain forest, were positioned on ridges and lower slopes. Soil water potentials were recorded in 1995-1997, and leaf water potentials were measured on six occasions. Soil water potentials on the ridges (-0.047 MPa) were significantly lower than on the lower slopes (-0.012 MPa), but during the driest period in May 1997 they fell to similarly low levels on both sites (-0.53 MPa). A weighted 40-day accumulated rainfall index was developed to model the soil water potentials. At dry times, D. muricatus (ridge) had significantly higher pre-dawn (-0.21 v. -0.57 MPa) and mid-day (-0.59 v. -1.77 MPa) leaf water potentials than M. wrayi (mean of ridge and lower slope). Leaf osmotic potentials of M. wrayi on the ridges were lower (-1.63 MPa) than on lower slopes (-1.09 MPa), with those for D. muricatus being intermediate (-1.29 MPa): both species adjusted osmotically between wet and dry times. D. muricatus trees were more deeply rooted than M. wrayi trees (97 v. 70 cm). M. wrayi trees had greater lateral root cross-sectional areas than D. muricatus trees although a greater proportion of this sectional area for D. muricatus was further down the soil profile. D. muricatus appeared to maintain relatively high water potentials during dry periods because of its access to deeper water supplies and thus it largely avoided drought effects, but M. wrayi seemed to be more affected yet tolerant of drought and was more plastic in its response. The interaction between water availability and topography determines these species' distributions and provides insights into how rain forests can withstand occasional strong droughts.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 53 条
[1]  
Airy Shaw H. K., 1975, EUPHORBIACEAE BORNEO
[2]  
[Anonymous], 1984, Tropical Rainforests of the Far East
[3]   COMPARISONS OF STRUCTURE AMONG MIXED DIPTEROCARP FORESTS OF NORTH-WESTERN BORNEO [J].
ASHTON, PS ;
HALL, P .
JOURNAL OF ECOLOGY, 1992, 80 (03) :459-481
[4]   APPLICATION OF QUANTITATIVE METHODS TO VEGETATION SURVEY .2. SOME METHODOLOGICAL PROBLEMS OF DATA FROM RAIN FOREST [J].
AUSTIN, MP ;
GREIGSMI.P .
JOURNAL OF ECOLOGY, 1968, 56 (03) :827-+
[5]  
Baillie I. C., 1983, Malaysian Forester, V46, P369
[6]   WATER POTENTIAL GRADIENTS FOR GAPS AND SLOPES IN A PANAMANIAN TROPICAL MOIST FORESTS DRY SEASON [J].
BECKER, P ;
RABENOLD, PE ;
IDOL, JR ;
SMITH, AP .
JOURNAL OF TROPICAL ECOLOGY, 1988, 4 :173-184
[7]   ROOT ARCHITECTURE OF SHRUBS AND SAPLINGS IN THE UNDERSTORY OF A TROPICAL MOIST FOREST IN LOWLAND PANAMA [J].
BECKER, P ;
CASTILLO, A .
BIOTROPICA, 1990, 22 (03) :242-249
[8]  
BRISCOE RD, 1984, ADV AGR INSTRUMENTAT, P1
[9]  
BRUNIG EF, 1969, ERDKUNDE, V2, P127
[10]   PSYCHROMETRIC MEASUREMENT OF SOIL WATER POTENTIAL - TEMPERATURE AND BULK DENSITY EFFECTS [J].
CAMPBELL, GS ;
GARDNER, WH .
SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1971, 35 (01) :8-&