Decentralised control of multimachine power systems with guaranteed performance

被引:55
作者
Xie, S
Xie, L
Wang, Y
Guo, G
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Natl Univ Singapore, Data Storage Inst, Singapore 119260, Singapore
来源
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS | 2000年 / 147卷 / 03期
关键词
D O I
10.1049/ip-cta:20000194
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper focuses on a robust decentralised excitation control of multimachine power systems. The authors are concerned with the design of a decentralised state feedback controller for the power system to enhance its transient stability and ensure a guaranteed level of performance when there exist variations of generator parameters due to changing load and/or network topology. It is shown that the power system can be modelled as a class of interconnected systems with uncertain parameters and interconnections. The authors develop a guaranteed cost control technique for the interconnected system using a linear matrix inequality (LMI) approach. A procedure is given for the minimisation of the cost by employing the powerful LMI tool. The proposed controller design is simulated for a three-machine power system example. Simulation results show that the decentralised guaranteed cost control greatly enhances the transient stability of the power system in the face of various operating points, faults in different locations or changing network parameters.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 16 条
[1]  
[Anonymous], SIAM
[2]  
Bergen AR., 1986, POWER SYSTEMS ANAL
[3]   STABILIZING A MULTIMACHINE POWER-SYSTEM VIA DECENTRALIZED FEEDBACK LINEARIZING EXCITATION CONTROL [J].
CHAPMAN, JW ;
ILIC, MD ;
KING, CA ;
ENG, L ;
KAUFMAN, H .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (03) :830-839
[4]  
Gahinet P., 1995, LMI Control Toolbox
[5]   A NONLINEAR CONTROL DESIGN FOR POWER-SYSTEMS [J].
GAO, L ;
CHEN, L ;
FAN, YS ;
MA, HW .
AUTOMATICA, 1992, 28 (05) :975-979
[6]   OPTIMALITY AND ROBUSTNESS OF LINEAR QUADRATIC CONTROL FOR NONLINEAR-SYSTEMS [J].
IKEDA, M ;
SILJAK, DD .
AUTOMATICA, 1990, 26 (03) :499-511
[7]   FEEDBACK LINEARIZING EXCITATIONS CONTROL ON A FULL-SCALE POWER-SYSTEM MODEL [J].
KING, CA ;
CHAPMAN, JW ;
ILIC, MD .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1994, 9 (02) :1102-1109
[8]  
Kundur P., 1994, POWER SYSTEM STABILI
[9]   Decentralized nonlinear optimal excitation control [J].
Lu, Q ;
Sun, Y ;
Xu, Z ;
Mochizuki, T .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) :1957-1962
[10]  
Petersen IR, 1998, INT J ROBUST NONLIN, V8, P649, DOI 10.1002/(SICI)1099-1239(19980715)8:8<649::AID-RNC334>3.0.CO