VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of liposomes in a conformationally sensitive fashion

被引:42
作者
Dennison, SM
Greenfield, N
Lenard, J
Lentz, BR [1 ]
机构
[1] Univ N Carolina, Dept Biochem, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Program Mol Cell Biophys, Chapel Hill, NC 27599 USA
[3] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Physiol & Biophys, Piscataway, NJ 08854 USA
[4] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Neurobiol & Cell Biol, Piscataway, NJ 08854 USA
关键词
D O I
10.1021/bi0203233
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Helical instability induced by gly residues in the transmembrane domain (TMD) of G protein, the fusion protein of vesicular stomatitis virus (VSV), was speculated to aid in the later steps of the fusion process, because G protein with ala's substituted for the two TMD gly's was inactive (Cleverley, D. Z., and Lenard, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 3425-30). Here we examine the conformations of synthetic peptides corresponding to fusion-active (GGpep) and inactive (AApep; G's replaced by A's) TMDs by CD spectroscopy, and then their effects on the kinetics of poly (ethyleneglycol) (PEG)-mediated fusion of small unilamellar vesicles. GGpep and AApep both assumed history-dependent, non-interconvertible ordered structures. Both peptides were largely helical under all conditions if derived from trifluoroethanol solutions, and aggregated in a beta-sheet form if derived from acetonitrile solutions. In solvent, detergents or lipid bilayers, GGpep showed a greater range of secondary structural features than did AApep. The two peptides had large but different effects on PEG-mediated fusion. Both enhanced the rate but not the extent of lipid mixing. AApep significantly inhibited the extent of fusion pore formation while GGpep had no effect. The initial rate of fusion was enhanced 6-fold by GGpep and less than 2-fold by AApep. Addition of 5 mol % hexadecane overrode all peptide-induced effects. We suggest that both GGpep and hexadecane promote pore formation by stabilizing the nonlamellar structures in fusion intermediates or initial small pores. AApep, which had fewer nonhelical features in its CD spectrum than GGpep, actually inhibited fusion pore formation.
引用
收藏
页码:14925 / 14934
页数:10
相关论文
共 55 条
[1]   EVALUATION OF SECONDARY STRUCTURE OF PROTEINS FROM UV CIRCULAR-DICHROISM SPECTRA USING AN UNSUPERVISED LEARNING NEURAL-NETWORK [J].
ANDRADE, MA ;
CHACON, P ;
MERELO, JJ ;
MORAN, F .
PROTEIN ENGINEERING, 1993, 6 (04) :383-390
[2]   The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition [J].
Armstrong, RT ;
Kushnir, AS ;
White, JM .
JOURNAL OF CELL BIOLOGY, 2000, 151 (02) :425-437
[3]   SIMPLE METHOD FOR PREPARATION OF HOMOGENEOUS PHOSPHOLIPID VESICLES [J].
BARENHOLZ, Y ;
GIBBES, D ;
LITMAN, BJ ;
GOLL, J ;
THOMPSON, TE ;
CARLSON, FD .
BIOCHEMISTRY, 1977, 16 (12) :2806-2810
[4]   Effect of single chain lipids on phospholipase C-promoted vesicle fusion.: A test for the stalk hypothesis of membrane fusion [J].
Basáñez, G ;
Goñi, FM ;
Alonso, A .
BIOCHEMISTRY, 1998, 37 (11) :3901-3908
[5]   QUANTITATIVE-ANALYSIS OF PROTEIN FAR UV CIRCULAR-DICHROISM SPECTRA BY NEURAL NETWORKS [J].
BOHM, G ;
MUHR, R ;
JAENICKE, R .
PROTEIN ENGINEERING, 1992, 5 (03) :191-195
[6]   MODULATION OF POLY(ETHYLENE GLYCOL)-INDUCED FUSION BY MEMBRANE HYDRATION - IMPORTANCE OF INTERBILAYER SEPARATION [J].
BURGESS, SW ;
MCINTOSH, TJ ;
LENTZ, BR .
BIOCHEMISTRY, 1992, 31 (10) :2653-2661
[7]   MICRODETERMINATION OF PHOSPHORUS [J].
CHEN, PS ;
TORIBARA, TY ;
WARNER, H .
ANALYTICAL CHEMISTRY, 1956, 28 (11) :1756-1758
[8]   Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases [J].
Chen, Z ;
Rand, RP .
BIOPHYSICAL JOURNAL, 1998, 74 (02) :944-952
[9]   An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids [J].
Chernomordik, LV ;
Leikina, E ;
Frolov, V ;
Bronk, P ;
Zimmerberg, J .
JOURNAL OF CELL BIOLOGY, 1997, 136 (01) :81-93
[10]   The transmembrane domain in viral fusion: Essential role for a conserved glycine residue in vesicular stomatitis virus G protein [J].
Cleverley, DZ ;
Lenard, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3425-3430