High-performance elastomeric nanocomposites via solvent-exchange processing

被引:293
作者
Liff, Shawna M.
Kumar, Nitin
McKinley, Gareth H.
机构
[1] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
[2] MIT, Dept Engn Mech, Cambridge, MA 02139 USA
[3] Intermolecular Inc, San Jose, CA 95134 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1798
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 54 条
[1]   Synthesis and characterisation of a nematic homo-polyurethane [J].
Acierno, D ;
Amendola, E ;
Carfagna, C ;
Concilio, S ;
Iannelli, P ;
Incarnato, L ;
Scarfato, P .
POLYMER, 2003, 44 (17) :4949-4958
[2]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[3]   A systematic series of 'model' PTMO based segmented polyurethanes reinvestigated using atomic force microscopy [J].
Aneja, A ;
Wilkes, GL .
POLYMER, 2003, 44 (23) :7221-7228
[4]  
[Anonymous], 1991, INTRO POLYM
[5]   Solvent-based nanocomposite coatings I.: Dispersion of organophilic montmorillonite in organic solvents [J].
Burgentzlé D ;
Duchet, J ;
Gérard, JF ;
Jupin, A ;
Fillon, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 278 (01) :26-39
[6]   Study on structure and orientation action of polyurethane nanocomposites [J].
Dai, XH ;
Xu, J ;
Guo, XL ;
Lu, YL ;
Shen, DY ;
Zhao, N ;
Luo, XD ;
Zhang, XL .
MACROMOLECULES, 2004, 37 (15) :5615-5623
[7]  
DIERKING I, 2003, LIQ CRYST TODAY, V12, P1
[8]   MORPHOLOGICAL-STUDIES OF MODEL POLYURETHANE ELASTOMERS BY ELEMENT-SPECIFIC ELECTRON-MICROSCOPY [J].
EISENBACH, CD ;
RIBBE, A ;
GUNTER, C .
MACROMOLECULAR RAPID COMMUNICATIONS, 1994, 15 (05) :395-403
[9]   Segmented polyurethane nanocomposites: Impact of controlled particle size nanofillers on the morphological response to uniaxial deformation [J].
Finnigan, B ;
Jack, K ;
Campbell, K ;
Halley, P ;
Truss, R ;
Casey, P ;
Cookson, D ;
King, S ;
Martin, D .
MACROMOLECULES, 2005, 38 (17) :7386-7396
[10]   Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates [J].
Finnigan, B ;
Martin, D ;
Halley, P ;
Truss, R ;
Campbell, K .
POLYMER, 2004, 45 (07) :2249-2260