Hamiltonian cosmological perturbation theory with loop quantum gravity corrections

被引:54
作者
Bojowald, Martin
Kagan, Mikhail
Singh, Parampreet
Hernandez, Hector H.
Skirzewski, Aureliano
机构
[1] Penn State Univ, Inst Gravitat Phys & Geometry, University Pk, PA 16802 USA
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
关键词
D O I
10.1103/PhysRevD.74.123512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmological perturbation equations are derived systematically in a canonical scheme based on Ashtekar variables. A comparison with the covariant derivation and various subtleties in the calculation and choice of gauges are pointed out. Nevertheless, the treatment is more systematic when correction terms of canonical quantum gravity are to be included. This is done throughout the paper for one example of characteristic modifications expected from loop quantum gravity.
引用
收藏
页数:13
相关论文
共 32 条
[1]  
[Anonymous], GRQC0110034
[2]  
Arnowitt R, 1962, Gravitation: An Introduction to Current Research, P227
[3]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[4]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[5]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[6]   Discreteness corrections to the effective Hamiltonian of isotropic loop quantum cosmology [J].
Banerjee, K ;
Date, G .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (11) :2017-2033
[7]   REAL ASHTEKAR VARIABLES FOR LORENTZIAN SIGNATURE SPACE-TIMES [J].
BARBERO, JF .
PHYSICAL REVIEW D, 1995, 51 (10) :5507-5510
[8]   Degenerate configurations, singularities and the non-Abelian nature of loop quantum gravity [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (03) :987-1008
[9]   Spherically symmetric quantum geometry: states and basic operators [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :3733-3753
[10]   Homogeneous loop quantum cosmology: the role of the spin connection [J].
Bojowald, M ;
Date, G ;
Vandersloot, K .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (04) :1253-1278