Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress

被引:74
作者
Angeloni, C.
Spencer, J. P. E.
Leoncini, E.
Biagi, P. L.
Hrelia, S.
机构
[1] Univ Bologna, Dept Biochem G Moruzzi, Nutr Res Ctr, I-40126 Bologna, Italy
[2] Univ Reading, Dept Food Biosci, Mol Nutr Grp, Reading RG2 9AR, Berks, England
关键词
quercetin; oxidative stress; H9c2; cells; uptake;
D O I
10.1016/j.biochi.2006.09.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H2O2-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H2O2 cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H2O2 cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways. (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 63 条
[1]   Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition [J].
Agullo, G ;
GametPayrastre, L ;
Manenti, S ;
Viala, C ;
Remesy, C ;
Chap, H ;
Payrastre, B .
BIOCHEMICAL PHARMACOLOGY, 1997, 53 (11) :1649-1657
[2]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[3]   New concepts in reactive oxygen species and cardiovascular reperfusion physiology [J].
Becker, LB .
CARDIOVASCULAR RESEARCH, 2004, 61 (03) :461-470
[4]  
Borska Sylwia, 2004, Folia Morphol (Warsz), V63, P103
[5]   Fate of the flavonoid quercetin in human cell lines: Chemical instability and metabolism [J].
Boulton, DW ;
Walle, UK ;
Walle, T .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 1999, 51 (03) :353-359
[6]   Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers [J].
Boyer, J ;
Brown, D ;
Liu, RH .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2004, 52 (23) :7172-7179
[7]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[8]   Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death [J].
Bueno, OF ;
Molkentin, JD .
CIRCULATION RESEARCH, 2002, 91 (09) :776-781
[9]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[10]   Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells [J].
Chen, Tong-Jong ;
Jeng, Jing-Yueh ;
Lin, Cheng-Wei ;
Wu, Chin-Yen ;
Chen, Yen-Chou .
TOXICOLOGY, 2006, 223 (1-2) :113-126