CD4+ CD5+ regulatory T cells render naive CD4+ CD25-T cells anergic and suppressive

被引:39
作者
Qiao, Miao [1 ]
Thornton, Angela M. [1 ]
Shevach, Ethan M. [1 ]
机构
[1] NIAID, Cellular Immunol Sect, Immunol Lab, NIH, Bethesda, MD 20892 USA
关键词
regulatory T cells; T-cell activation; tolerance; suppression; anergy;
D O I
10.1111/j.1365-2567.2007.02544.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
CD4(+) CD25(+) Foxp3(+) naturally occurring regulatory T cells (nTreg) are potent inhibitors of almost all immune responses. However, it is unclear how this minor population of cells is capable of exerting its powerful suppressor effects. To determine whether nTreg mediate part of their suppressor function by rendering naive T cells anergic or by converting them to the suppressor phenotype, we cocultured mouse nTreg with naive CD4(+) CD25(-) T cells from T-cell receptor (TCR) transgenic mice on a RAG deficient (RAG(-/-)) background in the presence of anti-CD3 and interleukin-4 (IL-4) to promote cell viability. Two distinct responder cell populations could be recovered from the cocultures. One population remained undivided in the coculture and was non-responsive to restimulation with anti-CD3 or exogenous IL-2, and could not up-regulate IL-2 mRNA or CD25 expression upon TCR restimulation. Those responder cells that had divided in the coculture were anergic to restimulation with anti-CD3 but responded to restimulation with IL-2. The undivided population was capable of suppressing the response of fresh CD4(+) CD25(-) T cells and CD8(+) T cells, while the divided population was only marginally suppressive. Although cell contact between the induced regulatory T cell (iTreg) and the responders was required for suppression to be observed, anti-transforming growth factor-beta partially abrogated their suppressive function. The iTreg did not express Foxp3. Therefore nTreg are not only able to suppress immune responses by inhibiting cytokine production by CD4(+) CD25(-) responder cells, but also appear to modulate the responder cells to render them both anergic and suppressive.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 31 条
[1]   CELL-GROWTH CYCLE BLOCK OF T-CELL HYBRIDOMAS UPON ACTIVATION WITH ANTIGEN [J].
ASHWELL, JD ;
CUNNINGHAM, RE ;
NOGUCHI, PD ;
HERNANDEZ, D .
JOURNAL OF EXPERIMENTAL MEDICINE, 1987, 165 (01) :173-194
[2]  
Cederbom L, 2000, EUR J IMMUNOL, V30, P1538, DOI 10.1002/1521-4141(200006)30:6<1538::AID-IMMU1538>3.0.CO
[3]  
2-X
[4]   Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3 [J].
Chen, WJ ;
Jin, WW ;
Hardegen, N ;
Lei, KJ ;
Li, L ;
Marinos, N ;
McGrady, G ;
Wahl, SM .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 198 (12) :1875-1886
[5]   Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants [J].
Cobbold, SP ;
Castejon, R ;
Adams, E ;
Zelenika, D ;
Graca, L ;
Humm, S ;
Waldmann, H .
JOURNAL OF IMMUNOLOGY, 2004, 172 (10) :6003-6010
[6]  
DESILVA DR, 1991, J IMMUNOL, V147, P3261
[7]   Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 1-producing, contact-independent type 1-like regulatory T cells [J].
Dieckmann, D ;
Bruett, CH ;
Ploettner, H ;
Lutz, MB ;
Schuler, G .
JOURNAL OF EXPERIMENTAL MEDICINE, 2002, 196 (02) :247-253
[8]   Uncoupling of IL-2 signaling from cell cycle progression in naive CD4+ T cells by regulatory CD4+CD25+ T lymphocytes [J].
Duthoit, CT ;
Mekala, DJ ;
Alli, RS ;
Geiger, TL .
JOURNAL OF IMMUNOLOGY, 2005, 174 (01) :155-163
[9]   CD4+CD25+ T cells facilitate the induction of T cell anergy [J].
Ermann, J ;
Szanya, V ;
Ford, GS ;
Paragas, V ;
Fathman, CG ;
Lejon, K .
JOURNAL OF IMMUNOLOGY, 2001, 167 (08) :4271-4275
[10]   Regulatory T cell lineage specification by the forkhead transcription factor FoxP3 [J].
Fontenot, JD ;
Rasmussen, JP ;
Williams, LM ;
Dooley, JL ;
Farr, AG ;
Rudensky, AY .
IMMUNITY, 2005, 22 (03) :329-341