Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity

被引:74
作者
Olsson, M. Charlotte
Krueger, Martina
Meyer, Lars-Henrik
Ahnlund, Lena
Gransberg, Lennart
Linke, Wolfgang A.
Larsson, Lars
机构
[1] Univ Munster, Physiol & Biophys Unit, D-48149 Munster, Germany
[2] Uppsala Univ, Dept Neurosci, S-75185 Uppsala, Sweden
[3] Penn State Univ, Ctr Dev & Hlth Genet, University Pk, PA 16802 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2006年 / 577卷 / 01期
关键词
D O I
10.1113/jphysiol.2006.116749
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Patients with spasticity typically present with an increased muscle tone that is at least partly caused by an exaggerated stretch reflex. However, intrinsic changes in the skeletal muscles, such as altered mechanical properties of the extracellular matrix or the cytoskeleton, have been reported in response to spasticity and could contribute to hypertonia, although the underlying mechanisms are poorly understood. Here we examined the vastus lateralis muscles from spinal cord-injured patients with spasticity (n = 7) for their passive mechanical properties at three different levels of structural organization, in comparison to healthy controls (n = 7). We also assessed spasticity-related alterations in muscle protein expression and muscle ultrastructure. At the whole-muscle level in vivo, we observed increased passive tension (PT) in some spasticity patients particularly at long muscle lengths, unrelated to stretch reflex activation. At the single-fibre level, elevated PT was found in cells expressing fast myosin heavy chain (MyHC) isoforms, especially MyHC-IIx, but not in those expressing slow MyHC. Type IIx fibres were present in higher than normal proportions in spastic muscles, whereas type I fibres were proportionately reduced. At the level of the isolated myofibril, however, there were no differences in PT between patients and controls. The molecular size of the giant protein titin, a main contributor to PT, was unchanged in spasticity, as was the titin : MyHC ratio and the relative desmin content. Electron microscopy revealed extensive ultrastructural changes in spastic muscles, especially expanded connective tissue, but also decreased mitochondrial volume fraction and appearance of intracellular amorphous material. Results strongly suggest that the global passive muscle stiffening in spasticity patients is caused to some degree by elevated PT of the skeletal muscles themselves. We conclude that this increased PT component arises not only from extracellular matrix remodelling, but also from structural and functional adaptations inside the muscle cells, which alter their passive mechanical properties in response to spasticity in a fibre type-dependent manner.
引用
收藏
页码:339 / 352
页数:14
相关论文
共 47 条
[1]   MYOSIN HEAVY-CHAIN ISOFORMS IN SINGLE FIBERS FROM M-VASTUS-LATERALIS OF SPRINTERS - INFLUENCE OF TRAINING [J].
ANDERSEN, JL ;
KLITGAARD, H ;
SALTIN, B .
ACTA PHYSIOLOGICA SCANDINAVICA, 1994, 151 (02) :135-142
[2]   Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications [J].
Anderson, J ;
Joumaa, V ;
Stevens, L ;
Neagoe, C ;
Li, Z ;
Mounier, Y ;
Linke, WA ;
Goubel, F .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2002, 444 (06) :771-776
[3]   Passive stiffness is increased in soleus muscle of desmin knockout mouse [J].
Anderson, J ;
Li, ZL ;
Goubel, F .
MUSCLE & NERVE, 2001, 24 (08) :1090-1092
[4]  
ASHWORTH B, 1964, PRACTITIONER, V192, P540
[5]   Chronic citalopram treatment induces time-dependent changes in the expression and DNA-binding activity of transcription factor AP-2 in rat brain [J].
Berggård, C ;
Damberg, M ;
Oreland, L .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2003, 13 (01) :11-17
[6]   INTERRATER RELIABILITY OF A MODIFIED ASHWORTH SCALE OF MUSCLE SPASTICITY [J].
BOHANNON, RW ;
SMITH, MB .
PHYSICAL THERAPY, 1987, 67 (02) :206-207
[7]  
Boudriau S, 1996, MUSCLE NERVE, V19, P1383, DOI 10.1002/(SICI)1097-4598(199611)19:11<1383::AID-MUS2>3.0.CO
[8]  
2-8
[9]  
Freiburg A, 2000, CIRC RES, V86, P1114
[10]   Spastic muscle cells are shorter and stiffer than normal cells [J].
Fridén, J ;
Lieber, RL .
MUSCLE & NERVE, 2003, 27 (02) :157-164