Role for the mortality factors MORF4, MRGX, and MRG15 in transcriptional repression via associations with Pf1, mSin3A, and transducin-like enhancer of split

被引:81
作者
Yochum, GS [1 ]
Ayer, DE [1 ]
机构
[1] Univ Utah, Huntsman Canc Inst, Dept Oncol Sci, Salt Lake City, UT 84112 USA
关键词
D O I
10.1128/MCB.22.22.7868-7876.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
mSin3A and Transducin-Like Enhancer of Split (TLE) are two histone deacetylase (HDAC)-containing corepressors that function to repress transcription at targeted genes. PR is a plant homeodomain zinc finger protein that interacts with both mSin3A and TLE, suggesting that it coordinates their function. Here we show that mSin3A and TLE interact with members of the mortality factor (MORF) family of putative transcriptional regulators. This family comprises MORF on chromosome 4 (MORF4) and MORF-related genes on chromosomes X and 15 (MRGX and MRG15, respectively) and is proposed to contribute to cellular senescence. Consistent with a role in transcription, we demonstrate that Gal4 fusions to each MORF family member repress transcription from a Gal4-dependent luciferase reporter. By using both mapping experiments and a dominant negative form of TLE, we show that repression by MORFs requires associations with mSin3A and TLE. Therefore, common functions of the MORFs are likely elicited through the action of a MORF/mSin3A/TLE complex. While the MORFs may have common functions, MRG15, but not MRGX or MORF4, interacted with Pf1. Therefore, MRG15 may have functions that are distinct from those of MRGX and MORF4. Consistent with this hypothesis, Pf1 reduced transcriptional repression by Gal4-MRG15 but it had no effect on repression by MRGX and MORF4. Pf1 has independent binding sites for MRG15 and mSin3A. In addition, Pf1 and MRG15 bind different domains on mSin3A. Together, these data suggest that the unique functions of MRG15 are elicited through the action of an MRG15/Pf1/mSin3A complex.
引用
收藏
页码:7868 / 7876
页数:9
相关论文
共 50 条
[1]   NuRD and SIN3 - histone deacetylase complexes in development [J].
Ahringer, J .
TRENDS IN GENETICS, 2000, 16 (08) :351-356
[2]   Chromodomains are protein-RNA interaction modules [J].
Akhtar, A ;
Zink, D ;
Becker, PB .
NATURE, 2000, 407 (6802) :405-409
[3]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[4]  
Ayer DE, 1996, MOL CELL BIOL, V16, P5772
[5]   MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3 [J].
AYER, DE ;
LAWRENCE, QA ;
EISENMAN, RN .
CELL, 1995, 80 (05) :767-776
[6]   Histone deacetylases: transcriptional repression with SINers and NuRDs [J].
Ayer, DE .
TRENDS IN CELL BIOLOGY, 1999, 9 (05) :193-198
[7]  
Bertram MJ, 1999, MOL CELL BIOL, V19, P1479
[8]   Conservation of the MORF4 related gene family:: identification of a new chromo domain subfamily and novel protein motif [J].
Bertram, MJ ;
Pereira-Smith, OM .
GENE, 2001, 266 (1-2) :111-121
[9]   The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II [J].
Bhoite, LT ;
Yu, YX ;
Stillman, DJ .
GENES & DEVELOPMENT, 2001, 15 (18) :2457-2469
[10]   Mix, a novel max-like BHLHZip protein that interacts with the max network of transcription factors [J].
Billin, AN ;
Eilers, AL ;
Queva, C ;
Ayer, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36344-36350