Experimental long-distance decoy-state quantum key distribution based on polarization encoding

被引:321
作者
Peng, Cheng-Zhi [1 ]
Zhang, Jun
Yang, Dong
Gao, Wei-Bo
Ma, Huai-Xin
Yin, Hao
Zeng, He-Ping
Yang, Tao
Wang, Xiang-Bin
Pan, Jian-Wei
机构
[1] Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[4] China Elect Syst Engn Co, Beijing 100039, Peoples R China
[5] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China
[6] E China Normal Univ, Key Lab Opt & Magnet Resonance Spect, Shanghai 200062, Peoples R China
[7] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany
关键词
D O I
10.1103/PhysRevLett.98.010505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the decoy-state quantum key distribution (QKD) with one-way quantum communication in polarization space over 102 km. Further, we simplify the experimental setup and use only one detector to implement the one-way decoy-state QKD over 75 km, with the advantage to overcome the security loopholes due to the efficiency mismatch of detectors. Our experimental implementation can really offer the unconditionally secure final keys. We use 3 different intensities of 0, 0.2, and 0.6 for the light sources in our experiment. In order to eliminate the influences of polarization mode dispersion in the long-distance single-mode optical fiber, an automatic polarization compensation system is utilized to implement the active compensation.
引用
收藏
页数:4
相关论文
共 38 条
[1]  
Bennett C. H., 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   Experiments on long wavelength (1550nm) "plug and play" quantum cryptography systems [J].
Bourennane, M ;
Gibson, F ;
Karlsson, A ;
Hening, A ;
Jonsson, P ;
Tsegaye, T ;
Ljunggren, D ;
Sundberg, E .
OPTICS EXPRESS, 1999, 4 (10) :383-387
[3]   Security of two quantum cryptography protocols using the same four qubit states [J].
Branciard, C ;
Gisin, N ;
Kraus, B ;
Scarani, V .
PHYSICAL REVIEW A, 2005, 72 (03)
[4]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[5]   Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors [J].
Cabrera, B ;
Clarke, RM ;
Colling, P ;
Miller, AJ ;
Nam, S ;
Romani, RW .
APPLIED PHYSICS LETTERS, 1998, 73 (06) :735-737
[6]  
DUSEK M, 2006, PROGR OPTICS VVVX
[7]   Trojan-horse attacks on quantum-key-distribution systems [J].
Gisin, N ;
Fasel, S ;
Kraus, B ;
Zbinden, H ;
Ribordy, G .
PHYSICAL REVIEW A, 2006, 73 (02)
[8]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[9]   Quantum key distribution over 122 km of standard telecom fiber [J].
Gobby, C ;
Yuan, ZL ;
Shields, AJ .
APPLIED PHYSICS LETTERS, 2004, 84 (19) :3762-3764
[10]  
Gottesman D, 2004, QUANTUM INF COMPUT, V4, P325