Arachidonic acid is converted to epoxyeicosatrienoic acids (EETs) by cytochrome P450 monooxygenases. EETs produce arterial vasodilatation, and recent evidence suggests that they are endothelium-derived hyperpolarizing factors. In porcine coronary arteries contracted with a thromboxane mimetic agent, we find that relaxation is rapidly initiated by exposure to 14,15-EET. The relaxation slowly increases in magnitude, resulting in a response which is sustained for more than 10 min. Cultured porcine aortic smooth muscle cells rapidly take up [H-3]14,15-EET. After 3 min, radioactivity is present in neutral lipids, phosphatidylcholine, and phosphatidylinositol. The cells also convert 14,15-EET to 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), and some DHET is detected in the medium after only 1 min of incubation. Like 14,15-EET, 14,15-DHET produces relaxation of the contracted coronary artery rings. These findings suggest that the incorporation into phospholipids and conversion to 14,15-DHET can occur at a rate that is fast enough to modulate the vasorelaxation produced by 14,15-EET.