Evidence that dynamin-2 functions as a signal-transducing GTPase

被引:92
作者
Fish, KN [1 ]
Schmid, SL [1 ]
Damke, H [1 ]
机构
[1] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
关键词
dynamin; apoptosis; p53; GTPase; endocytosis;
D O I
10.1083/jcb.150.1.145
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The role of dynamin GTPases in the regulation of receptor-mediated endocytosis is well established. Here, we present new evidence that the ubiquitously expressed isoform dynamin-2 (dyn2) can also function in a signal transduction pathway(s). A less than or equal to 5-fold increase of dyn2 relative to endogenous levels activates the transcription factor p53 and induces apoptosis, as demonstrated by reduced cell proliferation, DNA fragmentation, and caspase-3 activation. Dyn2-triggered apoptosis occurs only in dividing cells and is p53 dependent. A mutant defective in GTP binding does not trigger apoptosis, indicating that increased levels of dyn2 GTP, rather than protein levels per se, are required to transduce signals that activate p53. A truncated dyn2 lacking the COOH-terminal proline/arginine-rich domain (PRD), which interacts with many SH3 domain-containing partners implicated in both endocytosis and signal transduction, triggers apoptosis even more potently than the wild-type. This observation provides additional support for the importance of the NH2-terminal GTPase domain for the apoptotic phenotype. All described effects are dyn2-specific because >200-fold overexpression of dyn1, the 70% identical neuronal isoform, has no effect. Our data suggest that dyn2 can act as a signal transducing GTPase affecting transcriptional regulation.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 64 条
[1]   Src-mediated tyrosine phosphorylation of dynamin is required for β2-adrenergic receptor internalization and mitogen-activated protein kinase signaling [J].
Ahn, S ;
Maudsley, S ;
Luttrell, LM ;
Lefkowitz, RJ ;
Daaka, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (03) :1185-1188
[2]   Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms [J].
Altschuler, Y ;
Barbas, SM ;
Terlecky, LJ ;
Tang, K ;
Hardy, S ;
Mostov, KE ;
Schmid, SL .
JOURNAL OF CELL BIOLOGY, 1998, 143 (07) :1871-1881
[3]   HYDROGEN-PEROXIDE MEDIATES AMYLOID-BETA PROTEIN TOXICITY [J].
BEHL, C ;
DAVIS, JB ;
LESLEY, R ;
SCHUBERT, D .
CELL, 1994, 77 (06) :817-827
[4]   Loss of function and p53 protein stabilization [J].
Blagosklonny, MV .
ONCOGENE, 1997, 15 (16) :1889-1893
[5]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[6]  
Burns TF, 1999, J CELL PHYSIOL, V181, P231, DOI 10.1002/(SICI)1097-4652(199911)181:2<231::AID-JCP5>3.0.CO
[7]  
2-L
[8]  
CHEN MS, 1992, J CELL SCI, V103, P619
[9]   Levels of p53 in Epstein-Barr virus-infected cells determine cell fate: Apoptosis, cell cycle arrest at the G1/S boundary without apoptosis, cell cycle arrest at the G2/M boundary without apoptosis, or unrestricted proliferation [J].
Chen, WP ;
Huang, S ;
Cooper, NR .
VIROLOGY, 1998, 251 (02) :217-226
[10]   Mechanisms of p53-induced apoptosis: in search of genes which are regulated during p53-mediated cell death [J].
Choisy-Rossi, C ;
Reisdorf, P ;
Yonish-Rouach, E .
TOXICOLOGY LETTERS, 1998, 103 :491-496