Filamentation by Escherichia coli subverts innate defenses during urinary tract infection

被引:244
作者
Justice, Sheryl S.
Hunstad, David A.
Seed, Patrick C.
Hultgren, Scott J.
机构
[1] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
关键词
bacterial filamentation; SOS response; pathogenesis;
D O I
10.1073/pnas.0606329104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To establish disease, an infecting organism must overcome a vast array of host defenses. During cystitis, uropathogenic Escherichia coli (UPEC) subvert innate defenses by invading superficial umbrella cells and rapidly increasing in numbers to form intracellular bacterial communities (IBCs). In the late stages of the IBC pathway, filamentous and bacillary UPEC detach from the biofilm-like IBC, fluxing out of this safe haven to colonize the surrounding epithelium and initiate subsequent generations of IBCs, and eventually they establish a quiescent intracellular reservoir. Filamentous UPEC are not observed during acute infection in mice lacking functional Toll-like receptor 4 (TLR4), suggesting that the filamentous phenotype arises in response to host innate immunity. We investigated SulA, a cell division inhibitor associated with the SOS response, to gain insight into the role of filamentous UPEC in pathogenesis. A transcriptional reporter from P-sulA revealed spatial and temporal differences in expression within IBCs, and it was active in the majority of filamentous UPEC. Although UT189 and UT189 Delta sulA both formed first-generation IBCs equally well, UT189 Delta sulA was sharply attenuated in formation of second-generation IBCs and establishment of the quiescent intracellular reservoir. The virulence of UT189 Delta sulA was restored in TLR4-deficient mice, suggesting that filamentation facilitates the transition to additional rounds of IBC formation by subverting innate immune responses. These findings demonstrate that transient SulA-mediated inhibition of cell division is essential for UPEC virulence in the murine model of cystitis.
引用
收藏
页码:19884 / 19889
页数:6
相关论文
共 33 条
[1]   Temperature shift experiments with ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated [J].
Addinall, SG ;
Cao, C ;
Lutkenhaus, J .
JOURNAL OF BACTERIOLOGY, 1997, 179 (13) :4277-4284
[2]   CELL-DIVISION INHIBITORS SULA AND MINCD PREVENT FORMATION OF THE FTSZ RING [J].
BI, E ;
LUTKENHAUS, J .
JOURNAL OF BACTERIOLOGY, 1993, 175 (04) :1118-1125
[3]  
BOYUM A, 1968, SCAND J CLIN LAB INV, VS 21, P77
[4]   Neutrophil extracellular traps kill bacteria [J].
Brinkmann, V ;
Reichard, U ;
Goosmann, C ;
Fauler, B ;
Uhlemann, Y ;
Weiss, DS ;
Weinrauch, Y ;
Zychlinsky, A .
SCIENCE, 2004, 303 (5663) :1532-1535
[5]   Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli:: A comparative genomics approach [J].
Chen, SL ;
Hung, CS ;
Xu, JA ;
Reigstad, CS ;
Magrini, V ;
Sabo, A ;
Blasiar, D ;
Bieri, T ;
Meyer, RR ;
Ozersky, P ;
Armstrong, JR ;
Fulton, RS ;
Latreille, JP ;
Spieth, J ;
Hooton, TM ;
Mardis, ER ;
Hultgren, SJ ;
Gordon, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5977-5982
[6]   The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection [J].
Chromek, Milan ;
Slamova, Zuzana ;
Bergman, Peter ;
Kovacs, Laszlo ;
Podracka, L'udmila ;
Ehren, Ingrid ;
Hokfelt, Tomas ;
Gudmundsson, Gudmundur H. ;
Gallo, Richard L. ;
Agerberth, Birgitta ;
Brauner, Annelie .
NATURE MEDICINE, 2006, 12 (06) :636-641
[7]  
COCKAYNE A, 1984, J GEN MICROBIOL, V130, P465
[8]   NOVEL MECHANISM OF CELL-DIVISION INHIBITION ASSOCIATED WITH THE SOS RESPONSE IN ESCHERICHIA-COLI [J].
DARI, R ;
HUISMAN, O .
JOURNAL OF BACTERIOLOGY, 1983, 156 (01) :243-250
[9]   Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs [J].
Foxman, B .
DM DISEASE-A-MONTH, 2003, 49 (02) :53-70
[10]  
Hoshino K, 1999, J IMMUNOL, V162, P3749