Fractional Kramers equation

被引:169
作者
Barkai, E [1 ]
Silbey, RJ
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1021/jp993491m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a fractional Kramers equation for a particle interacting with a thermal heat bath and external nonlinear force field. For the force-free case, the velocity damping follows the Mittag-Leffler relaxation and the diffusion is enhanced. The equation obeys the generalized Einstein relation, and its stationary solution is the Boltzmann distribution. Our results are compared to previous results on enhanced Levy type of diffusion derived from stochastic collision models.
引用
收藏
页码:3866 / 3874
页数:9
相关论文
共 46 条
[1]  
[Anonymous], 1955, HIGHER TRANSCENDENTA
[2]  
BALESCU R, 1998, STAT DYNAMICS MATTER
[3]   BROWNIAN TYPE OF MOTION OF A RANDOMLY KICKED PARTICLE FAR FROM AND CLOSE TO THE DIFFUSION LIMIT [J].
BARKAI, E ;
FLEUROV, V .
PHYSICAL REVIEW E, 1995, 52 (02) :1558-1570
[4]   Dissipation and fluctuation for a randomly kicked particle: Normal and anomalous diffusion [J].
Barkai, E ;
Fleurov, V .
CHEMICAL PHYSICS, 1996, 212 (01) :69-88
[5]   Generalized Einstein relation: A stochastic modeling approach [J].
Barkai, E ;
Fleurov, VN .
PHYSICAL REVIEW E, 1998, 58 (02) :1296-1310
[6]   Levy walks and generalized stochastic collision models [J].
Barkai, E ;
Fleurov, VN .
PHYSICAL REVIEW E, 1997, 56 (06) :6355-6361
[7]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[8]   Distribution of single-molecule line widths [J].
Barkai, E ;
Silbey, R .
CHEMICAL PHYSICS LETTERS, 1999, 310 (3-4) :287-295
[9]  
BARKAI E, 1998, CHAOS KINETICS NONLI
[10]   Collision model for activated rate processes: turnover behavior of the rate constant [J].
Berezhkovskii, AM ;
Bicout, DJ ;
Weiss, GH .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (24) :11050-11059