Depth from automatic defocusing

被引:32
作者
Aslantas, V. [1 ]
Pham, D. T.
机构
[1] Erciyes Univ, Fac Engn, Comp Engn Div, TR-38039 Kayseri, Turkey
[2] Cardiff Univ, Mfg Engn Ctr, Cardiff CF24 3AA, Wales
来源
OPTICS EXPRESS | 2007年 / 15卷 / 03期
关键词
D O I
10.1364/OE.15.001011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a depth recovery method that gives the depth of any scene from its defocused images. The method combines depth from defocusing and depth from automatic focusing techniques. Blur information in defocused images is utilised to measure depth in a way similar to determining depth from automatic focusing but without searching for sharp images of objects. The proposed method does not need special scene illumination and involves only a single camera. Therefore, there are no correspondence, occlusion and intrusive emissions problems. The paper gives experimental results which demonstrate the accuracy of the method. (c) 2007 Optical Society of America.
引用
收藏
页码:1011 / 1023
页数:13
相关论文
共 45 条
[1]   A heuristic approach for finding best focused shape [J].
Ahmad, MB ;
Choi, TS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2005, 15 (04) :566-574
[2]   Edge and depth from focus [J].
Asada, N ;
Fujiwara, H ;
Matsuyama, T .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 26 (02) :153-163
[3]  
ASADA N, 1999, OPT LASER TECHNOL, V31, P95
[4]   Shape from focus using multilayer feedforward neural networks [J].
Asif, M ;
Choi, TS .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (11) :1670-1675
[5]  
ASLANTAS V, 2001, 10 TURK S ART INT NE, P301
[6]  
ASLANTAS V, 2003, INT C SIGN PROC CAN, P305
[7]  
ASLANTAS V, 2003, INT C SIGN PROC CAN, P260
[8]  
Aslantas V, 2006, LECT NOTES ARTIF INT, V3949, P41
[9]   3-D POSITION SENSING USING A PASSIVE MONOCULAR VISION SYSTEM [J].
CARDILLO, J ;
SIDAHMED, MA .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (08) :809-813
[10]  
CHAUDHURI S, 1999, DEPT DEFOCUS REAL AP