Aspects of an adaptive hp-finite element method: Adaptive strategy, conforming approximation and efficient solvers

被引:111
作者
Ainsworth, M
Senior, B
机构
[1] Mathematics Department, Leicester University
关键词
D O I
10.1016/S0045-7825(97)00101-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main components needed far an adaptive hp-version finite element algorithm are discussed: an adaptive hp-refinement strategy, effective methods for constructing conforming hp-approximations, and, efficient solvers for the large, ill-conditioned systems of linear equations. Together, these provide the methodology for an effective adaptive hp-version algorithm. The presentation emphasizes the links between the differing components showing how the algorithms may be implemented efficiently in practice. The main principles are illustrated by use of concrete examples so that a non-expert may develop their own adaptive hp-code. The performance of the whole algorithm is illustrated for some representative problems taken from linear elasticity.
引用
收藏
页码:65 / 87
页数:23
相关论文
共 28 条
[1]   A PROCEDURE FOR A POSTERIORI ERROR ESTIMATION FOR H-P FINITE-ELEMENT METHODS [J].
AINSWORTH, M ;
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 101 (1-3) :73-96
[2]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[3]   A preconditioner based on domain decomposition for h-p finite-element approximation on quasi-uniform meshes [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1358-1376
[4]   A hierarchical domain decomposition preconditioner for h-p finite element approximation on locally refined meshes [J].
Ainsworth, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (06) :1395-1413
[5]  
AINSWORTH M, 1996, 29 LEIC U
[6]  
AINSWORTH M, IN PRESS COMPUT MECH
[7]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[8]   EFFICIENT PRECONDITIONING FOR THE RHO-VERSION FINITE-ELEMENT METHOD IN 2 DIMENSIONS [J].
BABUSKA, I ;
CRAIG, A ;
MANDEL, J ;
PITKARANTA, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :624-661
[9]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[10]  
BABUSKA I, 1981, SIAM J NUMER ANAL, V18, P512