Modelling resistive wall modes in ITER with self-consistent inclusion of drift kinetic resonances

被引:71
作者
Liu, Yueqiang [1 ]
Chu, M. S. [2 ]
Chapman, I. T. [1 ]
Hender, T. C. [1 ]
机构
[1] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Gen Atom Co, San Diego, CA 92186 USA
基金
英国工程与自然科学研究理事会;
关键词
STABILIZATION; TOKAMAKS; FEEDBACK; ROTATION; PLASMAS;
D O I
10.1088/0029-5515/49/3/035004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate drift kinetic effects on the resistive wall mode (RWM) stability in ITER plasmas, due to the mode resonance with magnetic precession drifts and/or bounce motion of bulk plasma thermal particles. A toroidal drift kinetic model is self-consistently incorporated into the MHD formulation. Self-consistent simulations using the hybrid kinetic-MHD code MARS-K (Y.Q. Liu et al 2008 Phys. Plasmas 15 112503) predict a parameter space for ITER steady-state plasmas, where the RWM is fully stabilized by the drift kinetic effects combined with the toroidal plasma flow. A wider stable parameter space is predicted by the perturbative approach based on the ideal kink mode or the fluid RWM eigenfunction. The difference is attributed primarily to the self-consistent determination of the mode eigenvalue in the non-perturbative approach.
引用
收藏
页数:11
相关论文
共 23 条
[1]   ELECTROSTATIC MODIFICATION OF VARIATIONAL-PRINCIPLES FOR ANISOTROPIC PLASMAS [J].
ANTONSEN, TM ;
LEE, YC .
PHYSICS OF FLUIDS, 1982, 25 (01) :132-142
[2]   Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks [J].
Bondeson, A ;
Chu, MS .
PHYSICS OF PLASMAS, 1996, 3 (08) :3013-3022
[3]   Error field amplification and rotation damping in tokamak plasmas [J].
Boozer, AH .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5059-5061
[4]  
CHAPMAN IT, 2009, PLASMA PHYS CO UNPUB
[5]   EFFECT OF TOROIDAL PLASMA-FLOW AND FLOW SHEAR ON GLOBAL MAGNETOHYDRODYNAMIC MHD MODES [J].
CHU, MS ;
GREENE, JM ;
JENSEN, TH ;
MILLER, RL ;
BONDESON, A ;
JOHNSON, RW ;
MAUEL, ME .
PHYSICS OF PLASMAS, 1995, 2 (06) :2236-2241
[6]   VARIATIONAL-METHODS FOR STUDYING TOKAMAK STABILITY IN THE PRESENCE OF A THIN RESISTIVE WALL [J].
HANEY, SW ;
FREIDBERG, JP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (08) :1637-1645
[7]   Application of the low-frequency energy principle to wall modes [J].
Hu, B ;
Betti, R ;
Manickam, J .
PHYSICS OF PLASMAS, 2005, 12 (05)
[8]   Resistive wall mode in collisionless quasistationary plasmas [J].
Hu, B ;
Betti, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (10) :105002-1
[9]  
LIU Y, 2009, PHYS PLASMAS UNPUB
[10]   Feedback and rotational stabilization of resistive wall modes in ITER [J].
Liu, YQ ;
Bondeson, A ;
Chu, MS ;
Favez, JY ;
Gribov, Y ;
Gryaznevich, M ;
Hender, TC ;
Howell, DR ;
La Haye, RJ ;
Lister, JB ;
de Vries, P .
NUCLEAR FUSION, 2005, 45 (09) :1131-1139