The passive film formed anodically on nickel in borate buffer solution in both the passive and transpassive regions is found to be p-type in electronic character, corresponding to a preponderance of metal vacancies (over oxygen vacancies and nickel interstitials) in the barrier layer. However, at high anodic potentials, some n-type character was detected by Mott-Schottky analysis, which is probably due to the presence of free charge carriers (electrons) from the evolution of oxygen and/or the oxidative ejection of Ni3+ at the barrier layer/outer layer interface. The p-type character of the film is consistent with the diagnostic criteria obtained from the Point Defect Model for a passive film, in which the majority defect in the NiO barrier layer is the metal vacancy. The transpassive state is postulated to comprise a thick, porous oxide film on the surface, with the current probably being due to the oxidative ejection of Ni3+ species from the barrier layer and oxygen evolution within the pores, or both. (C) 2002 Elsevier Science Ltd. All rights reserved.