Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase

被引:85
作者
Morla, AO [1 ]
Mogford, JE [1 ]
机构
[1] Univ Chicago, Dept Pathol, Comm Canc Biol, Chicago, IL 60637 USA
关键词
myosin; migration; ERK; MAPK; FAK; phosphorylation;
D O I
10.1006/bbrc.2000.2769
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extracellular matrix proteins such as fibronectin (FN) and laminin (LM) are known to help control the growth and phenotype of vascular smooth muscle cells (VSMCs). Here we have analyzed the relationship between growth factor and integrin signaling pathways in VSMCs. Culturing porcine coronary artery smooth muscle cells (PCASMCs) on FN and LM leads to distinct effects on cell proliferation and contractile protein expression. PCASMCs cultured on FN proliferate at a higher rate than cells cultured on LM, regardless of the growth factor used to support proliferation. Moreover, cells cultured on LM show higher levels of expression of smooth muscle myosin heavy chain (a marker of smooth muscle cell differentiation) than cells cultured on FN. In contrast to the effects on proliferation and contractile protein expression, both FN and LM supported cell migration in response to PDGF. Also, both FN and LM supported activation of ERK1 and ERK2 in response to PDGF and bFGF. However, FN and LM did show a difference in their ability to support signaling through the focal adhesion kinase (FAK). PCASMCs cultured on FN show robust activation of FAK in response to either PDGF or bFGF, however, cells cultured on LM show little-to-no activation of FAK in response to the growth factors. The results show that integrin signaling pathways have a profound effect on VSMC proliferation and phenotype, and that FAB is an important intermediate in these signaling pathways. The implications of our findings on the mechanisms controlling VSMC proliferation and phenotype in pathological states such as atherosclerosis and restenosis are discussed. (C) 2000 Academic Press.
引用
收藏
页码:298 / 302
页数:5
相关论文
共 35 条
[1]   The biology of restenosis [J].
Bauters, C ;
Isner, JM .
PROGRESS IN CARDIOVASCULAR DISEASES, 1997, 40 (02) :107-116
[2]   CELL-CYCLE VERSUS DENSITY DEPENDENCE OF SMOOTH-MUSCLE ALPHA-ACTIN EXPRESSION IN CULTURED RAT AORTIC SMOOTH-MUSCLE CELLS [J].
BLANK, RS ;
THOMPSON, MM ;
OWENS, GK .
JOURNAL OF CELL BIOLOGY, 1988, 107 (01) :299-306
[3]   RECENT ADVANCES IN MOLECULAR PATHOLOGY - SMOOTH-MUSCLE PHENOTYPIC CHANGES IN ARTERIAL-WALL HOMEOSTASIS - IMPLICATIONS FOR THE PATHOGENESIS OF ATHEROSCLEROSIS [J].
CAMPBELL, GR ;
CAMPBELL, JH .
EXPERIMENTAL AND MOLECULAR PATHOLOGY, 1985, 42 (02) :139-162
[4]   SMOOTH-MUSCLE CELL IN CULTURE [J].
CHAMLEYCAMPBELL, J ;
CAMPBELL, GR ;
ROSS, R .
PHYSIOLOGICAL REVIEWS, 1979, 59 (01) :1-61
[5]  
CLOWES AW, 1983, LAB INVEST, V49, P327
[6]  
CLOWES AW, 1983, LAB INVEST, V49, P208
[7]   BINDING OF SOLUBLE FORM OF FIBROBLAST SURFACE PROTEIN, FIBRONECTIN, TO COLLAGEN [J].
ENGVALL, E ;
RUOSLAHTI, E .
INTERNATIONAL JOURNAL OF CANCER, 1977, 20 (01) :1-5
[8]   INHIBITION OF NEOINTIMAL SMOOTH-MUSCLE ACCUMULATION AFTER ANGIOPLASTY BY AN ANTIBODY TO PDGF [J].
FERNS, GAA ;
RAINES, EW ;
SPRUGEL, KH ;
MOTANI, AS ;
REIDY, MA ;
ROSS, R .
SCIENCE, 1991, 253 (5024) :1129-1132
[9]   Transduction - Integrin signaling [J].
Giancotti, FG ;
Ruoslahti, E .
SCIENCE, 1999, 285 (5430) :1028-1032
[10]  
Glukhova M.A., 1995, The Vascular Smooth Muscle Cell, P37