OsBIMK1, a rice MAP kinase gene involved in disease resistance responses

被引:101
作者
Song, FM [1 ]
Goodman, RM [1 ]
机构
[1] Univ Wisconsin, Dept Plant Pathol, Russell Labs, Madison, WI 53706 USA
关键词
benzothiadiazole; defense response; mitogen-activated protein kinase; Oryza (disease resistance); OsBIMK1;
D O I
10.1007/s00425-002-0794-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The activation of mitogen-activated protein kinases (MAPKs) has been previously implicated in signal transduction during plant responses to pathogen attack as well as to various environmental stresses. We have isolated from rice a new MAPK cDNA, OsBIMK1 (Oryza sativa L. BTH-induced MAPK 1), which encodes a 369-amino-acid protein with moderate to high nucleotide sequence similarity to previously reported plant MAPK genes. OsBIMK1 contains all 11 of the MAPK conserved subdomains and the phosphorylation-activation motif, TEY. We analyzed in detail the expression of OsBIMK1 upon treatment with various chemical and biological inducers of resistance responses in rice and in both incompatible and compatible interactions between rice and Magnaporthe grisea. Expression of OsBIMK1 was activated rapidly upon treatment with benzothiadiazole (BTH) as well as with dichloroisonicotinic acid, probe-nazole, jasmonic acid and its methyl ester, Pseudomonas syringae pv. syringae, or wounding. Expression of OsBIMK1 was induced rapidly during the first 36 h after inoculation with M. grisea in BTH-treated rice seedlings and in an incompatible interaction between M. grisea and a blast-resistant rice genotype. BTH treatment induced a systemic activation of OsBIMK1 expression. These results suggest that OsBIMK1 plays an important role in rice disease resistance.
引用
收藏
页码:997 / 1005
页数:9
相关论文
共 52 条
[1]  
Adamo C, 1997, RECENT ADV COMPUTAT, V1, P115
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]   Involvement of a MAP kinase, ZmMPK5, in senescence and recovery from low-temperature stress in maize [J].
Berberich, T ;
Sano, H ;
Kusano, T .
MOLECULAR AND GENERAL GENETICS, 1999, 262 (03) :534-542
[4]   Early signal transduction pathways in plant-pathogen interactions [J].
Blumwald, E ;
Aharon, GS ;
Lam, BCH .
TRENDS IN PLANT SCIENCE, 1998, 3 (09) :342-346
[5]   Differential activation of four specific MAPK pathways by distinct elicitors [J].
Cardinale, F ;
Jonak, C ;
Ligterink, W ;
Niehaus, K ;
Boller, T ;
Hirt, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :36734-36740
[6]   Harpin induces activation of the arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6 [J].
Desikan, R ;
Hancock, JT ;
Ichimura, K ;
Shinozaki, K ;
Neill, SJ .
PLANT PHYSIOLOGY, 2001, 126 (04) :1579-1587
[7]   Nitric oxide as a signal in plants [J].
Durner, J ;
Klessig, DF .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (05) :369-374
[8]   Negative regulation of defense responses in plants by a conserved MAPKK kinase [J].
Frye, CA ;
Tang, DZ ;
Innes, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :373-378
[9]   Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat [J].
Gorlach, J ;
Volrath, S ;
KnaufBeiter, G ;
Hengy, G ;
Beckhove, U ;
Kogel, KH ;
Oostendorp, M ;
Staub, T ;
Ward, E ;
Kessmann, H ;
Ryals, J .
PLANT CELL, 1996, 8 (04) :629-643
[10]   PROTEIN KINASES .6. THE EUKARYOTIC PROTEIN-KINASE SUPERFAMILY - KINASE (CATALYTIC) DOMAIN-STRUCTURE AND CLASSIFICATION [J].
HANKS, SK ;
HUNTER, T .
FASEB JOURNAL, 1995, 9 (08) :576-596