Numerical Simulation of the Current-Voltage Curve in Dye-Sensitized Solar Cells

被引:48
作者
Villanueva, Julio [2 ]
Anta, Juan A. [1 ]
Guillen, Elena [1 ]
Oskam, Gerko [2 ]
机构
[1] Univ Pablo Olavide, Area Quim Fis, Seville, Spain
[2] IPN, CINVESTAV, Dept Fis Aplicada, Merida, Yucatan, Mexico
关键词
ELECTRON-TRANSPORT; CHARGE-TRANSPORT; HIGH-EFFICIENCY; BACK-REACTION; PHOTOVOLTAIC PERFORMANCE; INTENSITY DEPENDENCE; RECOMBINATION; MODEL; SEMICONDUCTOR; INJECTION;
D O I
10.1021/jp907011z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A theoretical model based on the numerical integration of the continuity equation for electrons with trap-limited density-dependent diffusion and recombination constants is implemented to describe the functioning of dye-sensitized solar cells (DSSC). The application of the model combines recent theory on charge transport in nanocrystalline materials with parameters extracted from five simple measurements: the UV/vis spectrum of the dye in solution, the steady-state current-voltage curve, the open circuit photovoltage versus light intensity curve, photocurrent transient upon switching on an illumination source, and open-circuit voltage decay upon switching off the illumination source. As a novel feature not previously included in this kind of calculations, the model includes an additional term that accounts for the charge transfer from the transparent conducting oxide (TCO) Substrate to the electrolyte solution. The general applicability of the model is illustrated by applying it to two different types of cell: a TiO2-based solar cell with an organic solvent electrolyte and a ZnO-based solar cell with a solvent-free electrolyte. It is found that the numerical model is capable of adequately fitting all data for both systems, resulting in quantitative estimates for the main parameters controlling solar cell functioning and efficiency. The results show that it is possible to provide a global description of DSSCs based on fundamental theories for trap-limited transport and recombination using simple experimental techniques available to every solar cell laboratory. The present paper tries to help fill the gap between pure theoreticians and experimentalists working ob this kind of system.
引用
收藏
页码:19722 / 19731
页数:10
相关论文
共 63 条
[1]  
Andreani C, 2008, APPL PHYS LETT, V92
[2]   A numerical model for charge transport and recombination in dye-sensitized solar cells [J].
Anta, JA ;
Casanueva, F ;
Oskam, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (11) :5372-5378
[3]   Charge transport model for disordered materials:: Application to sensitized TiO2 -: art. no. 125324 [J].
Anta, JA ;
Nelson, J ;
Quirke, N .
PHYSICAL REVIEW B, 2002, 65 (12) :1-10
[4]   Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation [J].
Anta, Juan A. ;
Mora-Sero, Ivan ;
Dittrich, Thomas ;
Bisquert, Juan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (30) :4478-4485
[5]   Random walk numerical simulation for solar cell applications [J].
Anta, Juan A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (04) :387-392
[6]   High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J].
Bai, Yu ;
Cao, Yiming ;
Zhang, Jing ;
Wang, Mingkui ;
Li, Renzhi ;
Wang, Peng ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael .
NATURE MATERIALS, 2008, 7 (08) :626-630
[7]   Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells [J].
Bailes, M ;
Cameron, PJ ;
Lobato, K ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32) :15429-15435
[8]   Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method [J].
Bisquert, J ;
Zaban, A ;
Greenshtein, M ;
Mora-Seró, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13550-13559
[9]   Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].
Bisquert, J ;
Vikhrenko, VS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2313-2322
[10]   A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors [J].
Bisquert, Juan ;
Fabregat-Santiago, Francisco ;
Mora-Sero, Ivan ;
Garcia-Belmonte, Germa ;
Barea, Eva M. ;
Palomares, Emilio .
INORGANICA CHIMICA ACTA, 2008, 361 (03) :684-698