Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice

被引:864
作者
Okamoto, Y
Kihara, S
Ouchi, N
Nishida, M
Arita, Y
Kumada, M
Ohashi, K
Sakai, N
Shimomura, I
Kobayashi, H
Terasaka, N
Inaba, T
Funahashi, T
Matsuzawa, Y
机构
[1] Osaka Univ, Grad Sch Med, Dept Internal Med & Mol Sci, Suita, Osaka 5650871, Japan
[2] Sankyo Co Ltd, Shinagawa Ku, Tokyo, Japan
关键词
proteins; atherosclerosis; plasma; remodeling;
D O I
10.1161/01.CIR.0000042707.50032.19
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis., We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Methods and Results-Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or beta-galactosidase (Ad-betagal). The plasma adiponectin levels in Ad-APN-treated mice increased 48 times as much as those in Ad-betagal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN-treated mice by 30% compared with Ad-betagal-treated mice (P<0.05). In the lesions. of Ad-APN-treated mice, the lipid droplets became smaller compared with Ad-betagal-treated mice (P<0.01). Immunohistochemical analyses demonstrated that the adenovirus-mediated adiponectin migrate to foam cells in the fatty streak lesions. The real-time quantitative polymerase chain reaction revealed that Ad-APN treatment significantly suppressed the mRNA levels of vascular cell adhesion molecule-1 by 29% and class A scavenger receptor by 34%, and tended to reduce levels of tumor necrosis factor-alpha without affecting those of CD36 in the aortic tissue. Conclusions-These findings documented for the first time that elevated plasma adiponectin suppresses the development of atherosclerosis in vivo.
引用
收藏
页码:2767 / 2770
页数:4
相关论文
共 20 条
  • [1] Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell
    Arita, Y
    Kihara, S
    Ouchi, N
    Maeda, K
    Kuriyama, H
    Okamoto, Y
    Kumada, M
    Hotta, K
    Nishida, M
    Takahashi, M
    Nakamura, T
    Shimomura, I
    Muraguchi, M
    Ohmoto, Y
    Funahashi, T
    Matsuzawa, Y
    [J]. CIRCULATION, 2002, 105 (24) : 2893 - 2898
  • [2] Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity
    Arita, Y
    Kihara, S
    Ouchi, N
    Takahashi, M
    Maeda, K
    Miyagawa, J
    Hotta, K
    Shimomura, I
    Nakamura, T
    Miyaoka, K
    Kuriyama, H
    Nishida, M
    Yamashita, S
    Okubo, K
    Matsubara, K
    Muraguchi, M
    Ohmoto, Y
    Funahashi, T
    Matsuzawa, Y
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 257 (01) : 79 - 83
  • [3] Leptin and the regulation of body weight in mammals
    Friedman, JM
    Halaas, JL
    [J]. NATURE, 1998, 395 (6704) : 763 - 770
  • [4] ADIPOSE EXPRESSION OF TUMOR-NECROSIS-FACTOR-ALPHA - DIRECT ROLE IN OBESITY-LINKED INSULIN RESISTANCE
    HOTAMISLIGIL, GS
    SHARGILL, NS
    SPIEGELMAN, BM
    [J]. SCIENCE, 1993, 259 (5091) : 87 - 91
  • [5] Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients
    Hotta, K
    Funahashi, T
    Arita, Y
    Takahashi, M
    Matsuda, M
    Okamoto, Y
    Iwahashi, H
    Kuriyama, H
    Ouchi, N
    Maeda, K
    Nishida, M
    Kihara, S
    Sakai, N
    Nakajima, T
    Hasegawa, K
    Muraguchi, M
    Ohmoto, Y
    Nakamura, T
    Yamashita, S
    Hanafusa, T
    Matsuzawa, Y
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2000, 20 (06) : 1595 - 1599
  • [6] AdipoQ is a novel adipose-specific gene dysregulated in obesity
    Hu, E
    Liang, P
    Spiegelman, BM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (18) : 10697 - 10703
  • [7] Peroxisome proliferator-activate inhibit development of atherosclerosis in LDL receptor-deficient mice
    Li, AC
    Brown, KK
    Silvestre, MJ
    Willson, TM
    Palinski, W
    Glass, CK
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (04) : 523 - 531
  • [8] CDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (Adipose most abundant gene transcript 1)
    Maeda, K
    Okubo, K
    Shimomura, I
    Funahashi, T
    Matsuzawa, Y
    Matsubara, K
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 221 (02) : 286 - 289
  • [9] APOE-DEFICIENT MICE DEVELOP LESIONS OF ALL PHASES OF ATHEROSCLEROSIS THROUGHOUT THE ARTERIAL TREE
    NAKASHIMA, Y
    PLUMP, AS
    RAINES, EW
    BRESLOW, JL
    ROSS, R
    [J]. ARTERIOSCLEROSIS AND THROMBOSIS, 1994, 14 (01): : 133 - 140
  • [10] Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse
    Nakashima, Y
    Raines, EW
    Plump, AS
    Breslow, JL
    Ross, R
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1998, 18 (05) : 842 - 851